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1 Introduction

This document specifies the demonstration act&it@ show the effectiveness of COPCAMS
solutions for the large area surveillance applaceti The demonstration activities will be perfornmed

two categories, i.e., a field test and laboratoqyegiments.

The scenarios for field test and laboratory expents are explained in Section 2 and Section 3,
respectively. In Section 3.1, the system architectincluding the hardware and software
configurations and the methodology for evaluatingldf test are explained. The validation of
COPCAMS solutions on large area surveillance appbaos is given in Section 5 by explaining the
state of the art at project start and the expegtemress with COPCAMS project. Section 6

summarizes the achievements for field test anditicement concludes in Section 7.

2 Demonstrator task

This section describes the field test scenario“lfarge Area Surveillance Application” that is
based on the requirements given in “D1.1 & D1.2 umBary of Functional & Non-Functional
Description” and use cases defined in “D1.4 — Surgnod Use Cases and Field Test Definition”
documents. The evaluation strategy and measurenmeni& collected are also described in this

section.

The aim of Large Area Surveillance Application digéést is to effectively monitor large areas with
multiple cameras and extract meaningful informatidrout the monitored area such as locating and
classifying the moving object(s). The moving obgeict the monitoring area are classified as *human’,
‘vehicle’ or ‘other’ based on either only the vieaptured by the camera at the central stationlor al

the views available, i.e., views of the end nodearas in addition to the one at the central station

2.1 Field Test Scenario

The field test will be performed in a test are®ABELSAN's facility with the test setup illustrated
in Figure 1. In this setup, there will be two fixedde field of view (FOV) cameras and one narrow
FOV Pan Tilt Zoom (PTZ) camera located on the s@rfaf the building in the test area. The setup
parameters of the cameras are given in Table deftmonstration, both for the fixed cameras and PTZ
camera, Samsung SNP-3120VH camera will be useddiirent configurations. The specifications
of Samsung SNP-3120VH camera are listed in TabWiile, two fixed wide FOV cameras will be
used in end node configuration, PTZ camera wilubed in main station configuration as detailed in
Section 3.1.

ARTEMIS-JU — GA n°332913 2016-01-07 14:13 8
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Based on this configuration, the following testrsm will be applied for several times with
different conditions to measure the performanceriogethat are defined in Section 2.2. The “target
object” in the following scenario is used for “humia‘vehicle” or “other”.

Demonstration Scenario

Throughout the demonstration, the cameras will laegal to monitor a restricted area, where the
entrance is forbidden. In this case, a single #aapject” will pass through the monitored areahwit
speed in a range of 2.5-10 m/s. Then, Fixed Wid¥ B@meras on end node will detect a motion and
send a meta data consists of the pixel locationthefdetected “target object” and the extracted
features about the “target object” to the main i@tatvia wired or wireless communication
transmission. After that, on main station, the gapbical coordinate of the moving object will be
estimated from the pixel locations of the detectacget object” received from the end nodes. Then,
PTZ camera on main station will be steered to ttemated position of the “target object”. After
steering, PTZ camera will start to capture the iesagnd extracts features about the “target object”.
Then, multi view classification algorithm will beedgormed to show the class of the “target object”
with a specified icon for “human”, “vehicle” and tter”. In meantime, the images captured by the
PTZ camera will be processed with super resolugigorithm and the super resolved image will be
monitored. If the detected “target object” is hum@nvehicle, main station commands the selected
Fixed Wide FOV Cameras to stream their raw vided @ue received video streams from end nodes
and the PTZ camera will be stored on main statiorttfe evidence.

he

Figure 1: The illustration of test setup for Large Area Surveillance Application filed test

1 “Other” term is used as any object that is largeugh to be detected with motion estimation anféiht
than the object used in training phase.

ARTEMIS-JU — GA n°332913 2016-01-07 14:13 9
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Table 1: The setup parameters of the cameras that aiustrated in Figure 1.

Camera Type

FOV

Relative Positions Rotation

Y V4 Azimuth Elevation

Fixed

Horizontal:
54.44°
Vertical:
42.32°

10 0 7 0 -10

PTZ

Horizontal:
4.62°
Vertical:
3.58°

Table 2: The specifications of Samsung SNP-3120VH canma

Camera Parameter

Value

Imaging 1/4" Ex-view HAD PS CCD
Device
Total Pixels NT : 811(H) x 508(V), PAL : 795(H)596(V)
Effective NT : 768(H) x 494(V), PAL : 752(H) x 582(V)
Pixels
Scanning Progressive(VPS ON) (If WDR on, Interlaced Scan)
System
Frequency NT : H:15.734KHz / V : 59.94Hz, PAH : 15.625KHz / V :
Video 50Hz
Horizontal Color : 600 TV lines
Resolution
Min. Color : 0.7 Lux (F 1.65, 50 IRE, VPS OFF), 0.00Xxl{(8ens up
lllumination | 512X)
B/W : 0.07 Lux (F 1.65, 50 IRE, VPS OFF), 0.0001xL{i$ens up
512X)
S/ N Ratio 50dB
Video Out CVBS : 1.0 Vp-p / T composite
Focal Length | 3.69~44.32mm (12X)
Lens (Zoom Ratio)

ARTEMIS-JU — GA n°332913
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Max. F1.65(Wide) / F2.01(Tele)
Aperture
Ratio
Angular Field | H : 54.44°(Wide) ~ 4.62°(Tele) / V : 42.32°(WideB:58°(Tele)
of View
Min. Object | 0.2m (Wide) / 0.8m (Tele)
Distance
Lens Type DC Auto lIris
Pan Range 360° Endless
Pan / Tilt/ Pan Speed Preset : 650°/sec, Manual : 0.05°/<# fséc (Turbo:200°/sec)
Rotate Tilt Range -5°~185°
Tilt Speed Preset : 650°/sec, Manual : 0.05°/d&t0%sec
Ethernet RJ-45 (10/100BASE-T)
Video H.264, MPEG4, MJPEG
Compression
Format
Resolution NT : 704x480, 640x480, 352x240, 320x240
PAL : 704x576, 640x480, 352x288, 320x240
Max. NT : 30fps / PAL : 25fps
Framerate
Video Quality | H.264/MPEG4 : Compression Level, Target Bitratedlévontrol
Adjustment | MJPEG : Quality Level Control
Network
Bitrate H.264/MPEG4 : CBR or VBR
Control MJPEG : VBR
Method
Streaming Multiple Streaming (Up to 10 Profiles)
Capability
IP IPv4, IPv6
Protocol TCP/IP, UDP/IP, RTP(UDP), RTP(TCP), RTSP, NTP, HTTP

HTTPS, SSL,

DHCP, PPPoE, FTP, SMTP, ICMP, IGMP, SNMPv1/v2c/vEM
2), ARP,

DNS, DDNS

ARTEMIS-JU — GA n°332913
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Security HTTPS(SSL) Login Authentication
Digest Login Authentication
IP Address Filtering

User access Log

Streaming Unicast / Multicast
Method

Max. User 10 users at Unicast Mode
Access
Web Viewer | Supported OS : Windows XP / VISTA /7, MAC OS

Supported Browser : Internet Explorer 6.0 or Higlk@refox,

Google
Chrome, Apple Safari

Central Software

Management | NET-i viewer

2.2 Evaluation & Measurements

The described scenario in Section 2.1 will takeg@lautdoor under ‘sufficient’ and ‘stable’ day
light or artificial illumination with enough lux peentage, in addition to that no background chasge
allowed to happen, e.g., an object of the backgtauth as a parked bicycle is assumed to stag in it
place with no motion throughout the scenario. Weuag that the system is correctly installed to

cover the monitoring area and the cameras areratdiih
Under these conditions, the following metrics Widl measured for the performance evaluation.

» Detection Rate:For an evaluation of the first step in the singgenera solution, i.e., the
“other” / "anomaly” detection step, the detecti@ter of anomalies will be measured at a
given range of bearable false alarm rates.

» False Alarm Rate: For an evaluation of the first step in the sincgenera solution, i.e.,
the “other” / “anomaly” detection step, the falderm rate of anomalies will be measured
at a given range of desired detection rates.

» Classification Accuracy: In the set of observations that are labeled asnfnal”, i.e.,
“not anomalous” or “other”, the accuracy for theskaof “human” vs “vehicle”

classification will be measured.

ARTEMIS-JU — GA n°332913 2016-01-07 14:13 12
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e Total Transmission Bandwidth: For an evaluation of communication overhead in
distributed surveillance architecture, the totahfmission bandwidth for a unit time or

unit event will be measured.

3 Related Lab Experiments

3.1 Multi-target Detection and Tracking Experimental Seup

This section describes the Probability Hypothessidity Particle Filter (PHD-PF) [14] that is a
multi-target tracker developed by QMUL. PHD-PFeasted on publicly available video datasets and

its performance is quantified using state-of-thietr@cking metrics.

3.1.1 Motivation

The aim of this work is the algorithmic optimizatiof PHD-PF in order to improve the speed
performance (target: to achieve 15 fps) on embegdktorms (e.g. NVIDIA Jetson TK1). PHD-PF
estimates the state of targets by propagating twer the cardinality (number) of targets. Being a
Particle Filter-based approach, many operationg h@awe executed for each particle by making this
algorithm computationally expensive while thera igersion of the PHD filter that uses a closed form
solution based on Gaussian Mixtures (GM-PHD) [Mfich is computationally cheaper than the
PHD-PF. However, GM-PHD does not offer the flextgibf choosing arbitrary target motion models
and likelihood functions. This motivates our choifme the PHD-PF algorithm for multi-target

tracking.

3.1.2 Scenario definition

We tested PHD-PF for monocular person trackinggudiie used publicly available surveillance
datasets, specifically Towncentre (http://goo.gigd3), PETS2009-S2L1 (http://goo.gl/UNCCCI),
TUD-Stadmitte (https://goo.gl/4AMhNIQ) and iLids Baghttp://goo.gl/sfqYoT). These sequences
contain a variable number of people as well aslehging situations of occlusions, motion variations

and scale changes.

PHD-PF is developed in OpenCV running of CPU, anid tested on a desktop computer with
Intel i7 CPU 3.4GHz and 16Gb RAM. Object detectisperformed using the OpenCV version of a
person detector based on Histogram of Orientedi@nsd(HOG) [16]. The object tracking algorithm
is wholly developed by QMUL. The pipeline is tes@sl an end-to-end system: a video sequence is
given as input and object trajectories are providedutput. Performance is evaluated using ground-

truth information for object locations.

3.1.3 Evaluation strategy and Measurements

ARTEMIS-JU — GA n°332913 2016-01-07 14:13 13
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Tracking performance is quantified using Multiplejéxt Tracking Accuracy (MOTA), Multiple
Object Tracking Precision (MOTP), Precision (P),c&k (R) and Identity Switches (IDS) [13].
MOTA is computed as

YK _1(c1FNy + c,FPy, + c3IDS),)

MOTA=1-
Zﬁ:lvk

where FNi is the number of false negativdspx is the number of false positivel)S is the

number of identity switches amdis the number of ground truth targets at tkne

MOTP is computed as

t t

t

an kena Ek n Gk
= _1,t
t=1Sp=kf,; E,i U G,ﬁ

Zﬁ:lvk '

MOTP =

whereE} is the estimated bounding box affdis the ground-truth bounding box of targett k,

kf,; andk’,, are the initial and final time instant of target
Precision is computed as

B ITP|
~ |TP| + |FP|

and Recall as

_ |TP|
~ |TP| + |FN]|

where|TP|, |FP| and|FN| are the total number of True Positive, False Res#nd False Negative
trajectory estimations in the video sequence, gmdy. An estimated trajectory is considered True

Positive is the bounding box overlaps that of thaugd truth at least for the 50%.

Sample results are shown in Table 3 & 4 by using03&nd 300 particles per target, respectively.
Tracking accuracy is generally higher in the caseHD-PF using 3000 particles per target. A larger
number of particles allows PHD-PF to have a bedfgroximation of the target state space (more
robust against noisy detections) and a better ichswtion of targets over time (lower IDS).
Fragmented tracks are also the cause of IDS be¢hasgame object will be associated to multiple
identities by the PHD-PF. A large number of paescteduces the track fragmentation problem; this is
why the number of IDS is lower in the case of 3p@@ticles. The major drawback of a large number

of particles is the computation time per frame. iBgirthe experiments we measured that the

ARTEMIS-JU — GA n°332913 2016-01-07 14:13 14
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computation time per frame was between 2000 to 509@er frame in the case of 3000 particles per
target, whereas the computation time in the cag00fparticles per target was between 200 and 600
ms per frame. The large execution time in the cA8900 particles per target is due the large numbe
of targets inside Towncentre. Figure 2 shows amgia of tracking result on Towncentre where a
numerous targets are simultaneously tracked. Ircéise of TUD-Stadtmitte (Figure 3) the targets are

fewer leading to a smaller computational time.

Table 3: Tracking performance of PHD-PF using Open® HOG person detector. 3000 particles per target & used.

Dataset MOTA MOTP Precision Recall IDS
Towncentre 0.34 0.66 0.67 0.69 786
PETS2009-S2L1 0.12 0.63 0.61 0.39 106
TUD-Stadtmitte 0.58 0.75 0.85 0.73 27
iLIDS AB Easy 0.49 0.71 0.82 0.63 80
Table 4: PHD-PF tracking performance using OpenCV HDG person detector. 300 particles per target are iesl.

Dataset MOTA MOTP Precision Recall IDS
Towncentre 0.34 0.66 0.68 0.68 894
PETS2009-S2L1 0.15 0.63 0.63 0.40 93
TUD-Stadtmitte 0.58 0.75 0.86 0.73 40
iLIDS AB easy 0.50 0.71 0.84 0.63 87

Figure 2: Example of PHD-PF tracking result on Townentre where a large number of targets is tracked. @ne
of the targets are not tracked to do miss-detectian Semi-transparent box shows the estimated targstate. Green box
contour shows the detection.

ARTEMIS-JU — GA n°332913 2016-01-07 14:13 15
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Figure 3: Example of PHD-PF tracking result on TUD-S$adtmitte. Semi-transparent box shows the estimated target
state. Green box contour shows the detection.

3.2 Distributed Detection of Events Based on WSN For Lige Area

Surveillance

This section describes the distributed detectiatesy, based on WSN, proposed by CTTC as well

as the specification of the scenario and the figdts strategy.

3.2.1 Motivation

Herein CTTC proposes the use of a distributed tietesystem for surveillance applications based
on a Wireless Sensor Network (WSN). Moreover, ttenario definition and the associated field tests
are described as well as the evaluation strateglythe necessary measurements. The aim is to
complement the video surveillance system, propdsgdother partners. Namely, the proposed
detection system is based on sensors which arbasetd on video information but on other type of
information e.g. sonar sensors. This approach petmicomplement the video surveillance system in
situations where the video information may be dédggda e.g. at night, in rainy or cloudy situatioms o
in areas that cameras do not monitor properly. khege the proposed WSN based system may
provide useful side information for the main videaveillance system. For instance, the use of sonar
sensors leads to obtain the distance of the detettiect or person. And this distance can be used i
the main station of the video surveillance systenside information to estimate the position of the

detected object and to steer the PTZ camera pyoperl

3.2.2 Scenario Definition

The field test scenario is located in the CTTCliges and the setup of the detection system is as
follows. An array of multiple sonar sensors is ¢desed to take the measurements, see Figure 4. The
sonar sensors used for the experiments are the &xSdnar-ez1 MB1010 by Maxbotix, whose main
features are given in table 3, see [19] for furtiormation. Herein this type of sensors are
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considered to detect objects and persons in theetr of the monitored areBach sonar sensor is
connected to an IEEE 802.15.4 WSN node, namelyZthenotes from Zolertia are chosen, whose
main features are given in table 4, see [21] fahfer information. The connection between the senso
and the WSN node is done through an analog pogt Rtidgets 5V port in the Zolertia Z1 mote).
Moreover, the sensors provide a voltage leveltedl@o the measured distance according to the next

formula:

Vi
d=254—"
8

Whered is the detected distance in cW,. is the voltage related to the measurements theat th
sensor outputs between 0 V and 5 V. The scalingc8umts for the normalizations factors related to
the volts per inch provided by the sensor and thentization levels of the Zolertia Z1 ADC. Finally,

the factor 2.54 converts from inches to cm.

On its turn, the WSN processes the measuremengdpobby the sonar sensors in a distributed
manner. Namely, each node takes a buffer of measumts, which is provided by the sensor plugged
to it, and applies a detection algorithm. Sevef@raatives will be considered to implement these
algorithms. On the one hand, a detection methoddbas a heuristic threshold will be implemented.
Where the threshold will be set to a value highemtthe noise variance and will be determined
experimentally. The other detection algorithm thalt be considered is a Generalized Likelihood
Ratio Test (GLRT), which is a conventional methadely applied in statistical detection theory, see

e.g. [18], and consists on deciding a positive aite based on the next test statistic:

N-1

Z xt(n) >y

n=0

Where,N is the number of samples in the processing butfer) is a sample provided by the
sensor angt is a threshold whose value depends on the noisanea and the desired probability of

false alarm.

Afterwards, the decision of each node is sent viairaless link to a fusion centre. Note that
thanks to the distributed approach each node hasrtd only one bit after each processing buffer of
lengthN, instead of sending thé samples to the fusion centre. Namely, a bit watlue 1 will be sent
in case that an object is detected. At this paing important to mention that the software oé th
WSN nodes (needed to carry out the tasks descabegie) runs on Contiki OS, an open source

operative system that is widely adopted for the VW8N the Internet of Things (loT) worlds [17].

Regarding the fusion centre, it consists of an IEHBR.15.4 Zolertia Z1 node, which acts as a

WSN sink, and is connected via USB to a Raspbarg; ®hich implements the fusion algorithm and

ARTEMIS-JU — GA n°332913 2016-01-07 14:13 17



Consortium Confidential COPCAMS Cognitive & PerecepCameras

the communication with external systems. Namelg, data fusion method receives the detection
decisions taken by each node and combines thempgmyve the detection performance compared to
the one of a single node. The fusion method thatilleconsider is the standard “k out of n” fusion
rule, see [20]. This method contains as particael@mples logical rules such as the AND or the OR
functions. More specifically, the “k out of n” fusi rule decides that an object is detected if

U +u, +-tu, =22k—n

Whereu; is the decision of the— th WSN node, and its possible values are 1 if a tieteds
decided or -1 otherwise. Moreovarjs the number of WSN nodes, ahis a design parameter. The
interpretation of the “k out of n” fusion rule ilsat if k or more WSN nodes decide that an object has

been detected, then the global decision is to dabiat an object is present within the monitorezhar

It is assumed that each WSN node can reach thenfasintre in one hop. Moreover, for the field
test purposes all the WSN nodes are assumed tduggepl to the electricity grid. It is worth to
mention that the aim of the system is to deteanttader within the monitored area. The system can
detect both people and objects, though the claasihn process is beyond its scope and it is assume

to be carried out in the main video surveillancetesm.

Monitored Area

Fusion Centre

WSN

. %

WSN
nodes Sonar

Sensors

Raspberry

Pi2
“?‘ ———> ALARM!

Figure 4: Setup of the detection system based onnsw sensors.
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Table 5: Main feaures of the sonar sensor LV-MaxSonsez1 MB1010.

Electrical properties current draw, M current bonaumption 3 mA.Outp)

. ption 3 mA.Output
impedance 14.7¢.
Readings rate Up to 50 ms.
Detection range From 15.24 cm up to 6.45 m.
Sensor type Distance (sonar)
Sensor output type Ratiometric
Measurement Distance Resolution 25.4 mm
Operating temperature From -40°C to 65°C.

Table 6: Main features of the Zolertia Z1 WSN node.

Micro Controller Unit (MCU) 16 bit ultralow power MCU based on the 2nd
generation of the MSP430 by Texas Instruments.
Memory 92 KB flash, 8 KB RAM
Wireless communication 2.4 GHz IEEE 802.15.4
RF transceiver Widely adopted CC2420 by Texas Instruments plug an
embedded or external antenna.
Operative System (OS) Contiki
Analog I/O’s interfaces 2 x 3V Phidgets, 2 x 5V Phidgets

3.2.3 Evaluation Strategy and Measurements

In order to assess the proposed detection systemettt assumptions are supposed to hold:

» There is not background change in the monitored. aFbat is, the objects present in the
monitored area are static to avoid unnecessarg édsms.
 The WSN nodes are plugged to the electricity grid.

* The WSN nodes reach the sink in one hop.

The aim of the evaluation procedure is to assesdatection performance metrics as a function of
the system parameters and event parameters that dalirect influence on them. Namely, the

performance metrics are:

* The detection rate.

« The false alarm rate.
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Moreover, the event parameters that have a dméaence on the metrics are:

e The amplitude of the event.

* The duration or length of the event (in samplewigled by the sensor).
The system parameters are:

* The threshold of the detector method applied at 848N node.

* The number of WSN nodes.

* The length (in samples) of the processing buffezaamth node. This is the window where
the detection algorithm is applied at each WSN node

* The total number of processing buffers.

A twofold strategy is proposed to carry out the exkpents. In the first approach, a hybrid
experimental and simulated procedure is proposedgess thoroughly the performance metrics. More
specifically, the WSN will monitor the area in aakeexperiment and the events will be added
artificially in each mote at a given number of mssing buffers. Moreover, the number of processing
buffers will be high enough to obtain reliable wsti@atal values of the performance metrics. In thégy,
the amplitude and the length of the event can bé&raited and we can obtain plots of the performance

metrics as a function of them.

The second approach, to carry out the experimeirils;onsider real events and the aim is to see
whether the system obtains a performance whichitisirwthe bounds predicted by the first hybrid

approach.

3.3 Communication Infrastructure Simulation

This section describes the System-Level SimulatStLS) developed by IQU and its

implementations related to large area surveillapgication.

3.3.1 Motivation

Modern mobile applications have boosted the amafintideo content exchanged among user
equipment terminals (UEs), which participate in M/ibased Device-to-Device (D2D) networks.
Cooperative techniques and Network Coding (NC)védely used for enhancing the performance of
D2D communication and alleviate the wireless chanaecess issues. Bidirectional video
transmission, with its stringent bandwidth and Quabdf Service (QoS) requirements, can greatly
benefit from such advanced techniques to improver experience without increasing network

congestion.
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Digital video is a key driver of the explosion irobile data traffic of Long Term Evolution (LTE)
networks, due to the increased expansion of demgndiultimedia applications, such as video
streaming, online gaming, social media networkind ¥eb TV, among others. Mobile carriers face
complex technical challenges, as the QoS requiresrefrdelay sensitive applications, such as video
traffic, have to be met without inflating the cai(CAPEX) and operational (OPEX) expenditures of
cellular networks. Concurrently, the user expemesibould be maintained in high levels, unaffected
by the escalating network load [22].

Nowadays, the LTE network performance is evaluatdonly in terms of QoS, but also in terms
of Quality of Experience (QoOE), which is an upgrhdedicator of the users’ satisfaction with the
offered service[23]. Especially for the case ofedebased mobile applications, the QoE can be
assessed by various video quality metrics, su¢heaslean Opinion Score (MOS) [3].

In the last few years, various QoE evaluation mudhelve been proposed, aiming to improve the
user experience in video transmission scenarios @ltular networks. In [4], a video quality model
and QoE optimization scheme have been presentadhwhm to reduce the video distortion. Another
framework for QoE inference is the MintMOS framelw@s], which compares parameters of video
streams in real time to QOE parameters alreadyir@ateby subjective quality assessment, in order to
present realistic MOS values.

With the aim of improving the QoE for the mobileetss the offloading of mobile traffic to D2D
connections seems to be a viable solution to thielae network congestion problem. The direct
connectivity among UEs is based on Wi-Fi links ttesiide in the unlicensed spectrumatband D20
[6]. The content sharing among UEs can be initistddght of two main factors: i) the desire fortda
exchange with D2D bidirectional flows, as inducgdnamerous multimedia applications, and ii) the
participation in cooperative communications, whiba UEs serve as relays that support other UES’
communication.

Despite its capability to enhance user experiencghand D2D communication is affected by
inherent issues of Wi-Fi connectivity. The contentfor channel access among multiple UEs has a
severe impact on the performance of D2D links. fiddally, bad channel conditions increase the
number of packet retransmissions. To handle thed#gms, several cooperative MAC protocols have
been already proposed. A considerable number of tize the NC technique, aiming to further
improve the network performance. With NC, in thelD&@ntext, the cooperating UEs can encode and
transmit multiple overheard packets.

As advocated in [7], NC can be applied in coopeealAC layer schemes, allowing the nodes to
retransmit overheard packets of different flowsr Falay-aided bidirectional communication under
saturated conditions, the NCCARQ-MAC protocol [8ashbeen proposed. Nonetheless, with
NCCARQ-MAC, the relays cooperate only if NC condlits are fulfilled. Furthermore, corrupted
packets can be used for the retrieval of origiralkets exchanged between two nodes, as proposed in

the NCAC-MAC scheme [9], in order to improve theotighput and delay performance. However,

ARTEMIS-JU — GA n°332913 2016-01-07 14:13 21



Consortium Confidential COPCAMS Cognitive & PercepCameras

this process requires strictly synchronized codpararansmissions. Aiming to further exploit NC
opportunities in D2D communications, the ACNC-MACotcol [10] allows neighbouring UEs,
which overhear packets and cooperation requeségttas relays in bidirectional D2D transmissions.
Taking into account the increasing popularity adeo services and the benefits of outband D2D
communication, we will apply ACNC-MAC in a bidireghal video transmission scenario. We also
propose a new performance valuation framework, wigimploys the Iquadrat (IQU) System-Level
Simulator (SLS) for a realistic simulation of ther@mentioned scenario. Our SLS faithfully emulates
all aspects of the cooperative transmission and Qmefiction techniques, assessing the effects on

perceived video quality.

3.3.2 Scenario Definition
In the D2D network, depicted in Fig. 1, two UEs @nd ) are involved in bidirectional video

communication (video sharing/conferencing). Pooreless channel conditions might lead to packet
losses in the D2D links, thus retransmissions mightequired. These are performed by N neighboring

idle UEs that can overhear and retransmit packetsyg as relays {r..., f,..., In}.

o T~ - ~

/’—\\_// \v/ \\
—_——- // \
-7 ~q .
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/ Q8 \

- PEl E(uz_r) \ //
/ s
‘ \ % /
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Figure 5: Outband D2D network topology

The exchanged video consists of either metadatdREG4 video frames, i.e., I-frames (or intra
frames) P-frames (predictive frames) and B-frarbadirectional frames). Packets to be transmitted ar
stored in the buffers of the two UEs. It must b&edahat metadata transmission greatly decreases th
required bandwidth, but on the other hand it iseeipd to be much more sensitive to losses. The
MPEG4 decoder typically operates even after maltgrcket losses (albeit with significant noise and
visible artifacts) while we assume that even alsingacket loss can't be tolerated in metadata

transmission mode.
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The UEs’ transmissions are managed either with80211 Distributed Coordination Function
(DCF) MAC mechanism [11], which is based on theri@arSense Multiple Access with Collision
Avoidance (CSMA/CA) method, or with the ACNC-MACqtocol [10]. According to the DCF rules,
collisions can be resolved via retransmissionsehgtloy an exponential backoff window. In the mliti
backoff stage, the value of contention window Hees minimum value. After a collision occurs, the
contention window is doubled, until the maximumuals reached. ACNC-MAC was chosen due to its
particularly good performance in servicing bidifeotl traffic, as in case of video conferencing
applications.

Let us now provide a short description of the ACNRIAC operation. Considering that and u
establish a bidirectional flow and wish to transpatkets p and p', respectively. According to ACNC-
MAC protocol, after failing to decode packetupsends a Request-For-Cooperation (RFC) packet,
piggy-backing its own packet p' destined far Upon receiving the RFC, relays that have overhear
and stored p in their buffer, will compete for chahaccess to assist in the packet retransmission.

Part of the strength of ACNC-MAC lies in the relbgickoff value selection process, to avoid
contention among relays. For each relay the chafitee contention window is based on the number of
packets it has overheard. The relay that gainssacte the channel will transmit an "Eager-To-
Cooperate (ETC)" packet. This specifies the nunabgrackets to be transmitted and also it indicates
the expected number of ACK packets, so that thpemdion phase ends.

Relays with two packets stored in their buffer (dreem each flow) are assigned a lower backoff
value to make sure they gain access to the chahmene of the relays has received both packeits, b
some of them have overheard only one packet, thretag with one packet will be prioritized. In case
that all relays have failed to decode any packetE&C packet, transmitted by the relay that gains
channel access, terminates the cooperation round.

In a nutshell, three possible cases are identified:

« Arelay has correctly received both p and p' packet is able to perform NC. The XORed
packet pd p' is piggy-backed to the ETC packet (Fig. 2).

* Only one of p and p' has been correctly decodethéyelay. This packet is again piggy-
backed to the ETC.

« All relays fail to decode any packet, thus onlyEArC packet ends the cooperation.

To make a fair comparison between DCF used asibasahd ACNC-MAC, we assume that the
joint packet loss probability at the relay and matestination in ACNC-MAC is equal to the packet
error rate (PER). In Fig. 1, assuming relawins the contention phase and transmits its pé&kete

obtain:

(1 = PERy1-u2) = (1 = PERy1— ) (1 = PERy2— o).
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Figure 6: ACNC-MAC operation example

3.3.3 Evaluation Strategy and Measurements

The IQU SLS calculates a wide range of trafficistiass, both node-level and network-level, over
the run-time of its operation. These statistics stared in a set of trace files at the end of each
simulation cycle, for further analysis with statat software or for generating plots and diagrams.
These include common QoS metrics such as paclat rate, packet delay and saturation throughput
for given channel conditions. These metrics canebaployed to evaluate the video metadata
transmission, e.g. calculating the maximum numbesupported video streams and the achievable

throughput to guarantee certain QoS parameters.

Additionally, a new performance evaluation framekimr the ACNC-MAC protocol is proposed,
based on the IQU System-Level simulator (SLS) pfatf along with a Quality of Experience (QOE)
prediction model. Our goal is to measure the eftdcACNC-MAC on enhancing user experience,

quantified with the Mean Opinion Score (MOS) metric

3.3.3.1 1QU System Level Simulator

The System Level Simulator (SLS) is a simulatioatfpkm for wireless networks. Its focus is in
simulating Layer-2 protocols, but it also implengephysical layer functionalities, i.e., simulatitige
underlying wireless channel and the propagatiomiogless signals. The SLS is a flexible software
tool, which allows rapid prototyping and validatiarh algorithms and scenarios. One of the key
strengths of the SLS is the availability of a Giiaph User Interface (GUI) which increases the
efficiency of the simulation process. It also vies the operation of the network in real timeeTh
SLS has been developed in the C++ programming Egegywsing Microsoft .NET Framework.

The ACNC-MAC protocol was implemented as a new n@duhich was added to the SLS, to

evaluate its performance in a close-to-realistidrenment. Protocol implementations at the SLSimre
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the form of Finite State Machines (FSMs). The Sldflen model was also accordingly modified to
support multicasting of XORed packets, which isurezg by ACNC-MAC protocol.

In Figure 3, the main SLS screen is depicted, Wil UEs exchanging video traffic and two relays
assisting in the transmission. A color code is @ygdl, representing the operating state of the mobil
stations (e.g., green is for transmitting and Hioe receiving stations). During run-time, the GUI
interoperates with the SLS engine which implemehés networking protocols and the components
which are responsible for generating traffic, cllting traffic statistics, and writing trace filehe
simulation is controlled by a set of buttons (Plaguse, Step, Stop). The SLS allows the pausesof th
simulation at any moment to inspect the variable$ @eration state, and then continue the simulatio
or advance the time step-by-step. This is helpfulvalidating the correct operation of networking
protocols, facilitating protocol development.

It must be noted that time representation at th® SLmeasured in time-step intervals (or slots), of
10 us. The main simulation loop advances time by one tinterval per simulation step. The SLS
modules all have a common time representation mrgh¢h simulation step all modules interact with

each other to implement the network operations.

Legend

Figure 7: SLS Main screen

3.3.3.2 Measurement Metrics

Traditional QoS metrics, such as delay and pads# tatio, are already supported by the SLS and as
previously mentioned can be employed to evaluaenibtadata video transmission. For example, we
can calculate the maximum number of supported visteeams for given channel conditions and
calculate the maximum throughput to guarantee angpacket delay or a given packet error rate
probability. However, QoS parameters are not ateynaedictors of user experience when video traffic
(i.e., MPEG 4 frames) are transmitted. Thus, te@ssshe efficiency of MAC protocols in perceived

video quality without resorting to costly field tesseveral QoE prediction models have been propose
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in the literature. In our performance evaluatioanfework, we employ the QOE prediction model
described in [12], which takes into account theeaffof packet losses in different frame types. The
authors employ a database of videos for a rangdifferent packet error rates, and employ Video
Quality Model (VQM) to assess their quality. Thiogess has a very good correlation with the MOS
score, which evaluates the perceptual video quagyexperienced by experts. However, VQM
assessment it is still too resource intensive temployed in a real-time network simulation. The
output of the author's analysis is a linear moldat predicts the MOS score frois, Bioss and Rss

namely, the frame loss ratios of I-frames, B-framed P-frames, respectively:

MOS = 4.9 — 1.08 - Ijpss — 3.28 - Bjogs — 323 - Plogs

In the abovementioned model, the authors assunea thiagle packet loss at an I-frame is recoverable
(as long as it is not at the frame header) andfdrlosses have a bigger impact on video quality th
B-frame losses.

To implement the aforementioned QoE prediction ehaat the SLS, we added support for the
MPEG4 Group of Pictures (GOP) pattern, which spesithe order of frame types. The GOP starts
with an I-frame followed by two B-frames (denotesl @an "IBB" pattern) and then by a pattern of
multiple "PBB" patterns, as depicted in Fig. 4. Thenber of frames in a GOP is referred to as the
GOP length. The three different frame types inGi@P support a different compression ratio:

+ |-frames are frames that can be independently @etoand have the lowest compression
ratio. An average 7:1 compression ratio is assumed.

« B-frames have the highest compression ratio, bgreeting past and future frames. An
average 50:1 compression ratio is assumed.

» P-frames stand in between |-frames and B-frameh, avi average compression ratio of 20:1.

Figure 8: MPEG4 video GOP structure
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To simulate the abovementioned GOP structure at Sh& we mark transmitted packets
accordingly. The GOP structure starts with an "IBRttern, with the I-frame taking up 14 packets and
each B-frame 2 packets. Then the "PBB" patterepgated 8 times, with P-frames taking-up 5 packets
and each B-frame again 2 packets. It can be setiihih relative sizes of the frame types refleetrth

average compression ratio.

3.3.4 Resaults

We have programmed the QoE prediction for videagmission in the IQU SLS and we will

provide the results soon.

3.4 Cognitive and Perceptive Cameras Systems for Smaikacility

Management Domain

3.4.1 Motivation

Facilities management is gaining increasing redanias a significant contributor to the overall
effectiveness of many organisations. Smart Facditg Building Management (SF&BM) generally
involves a number of disciplines and services. st general description to identify the market
segment is understanding Smart F&BM as integratethagement process that considers people,
process and place in organisational context, bdéomysed in the design and improvement of
intelligent buildings (IB) and the coordination aogtimization of several domains: facilities, life
security, physical security and information tecloggl In this context, companies are becoming more
interested in exploring opportunities to consokdatultiple services from single suppliers as a oy
improving value. There is a significant consolidatopportunity for service providers able to dalive

an integrated solution.

With buildings responsible for about half of alleegy consumption and greenhouse gas
emissions, establishing, managing, optimizing, maghtaining sustainability objectives is becoming a
core driver. Also, forward-looking companies andlpuentities are adopting a new approach, where
not only a coordinated work and integrated I&FMvesg is being required, but also providing new

smart services that can take corrective actiorsnaatically.

Smart Buildings — Automatic Corrective Actions

.One of the key trends is to provide solutions tbah take remedial actions automatically,
providing a coordinated response in the “foundati@ystems” such as security, electrical distrifmuti

or HVAC (heating, ventilation, and air conditionjng
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Smart Video Applications

While the video surveillance system is a mainstybwlding security, it may serve many
purposes. The analysis of digital images address@scts of physical security but may go way beyond
that to provide data and information for buildirfg Isafety, energy management and overall building

performance.

However, though during last years a wide rangeew¥ applications within computer vision have
been enabled, the network bandwidth, server prowpsand cost have been inhibitors for these
opportunities up until now. Additionally, the tréidnal vision of a vertically structured market
prevented the adaptation to a growing demand ofuiygm and flexibility in the context of Smart
Facility Management. The market is demanding ndy onore efficient, flexible and autonomous
surveillance systems, but the integration of vidgstems to provide more data and information for

energy management and enhanced building performance

In this context, the Cognitive & Perceptive Videgstems (CPVS) enabled by COPCAMS would
represent a significant step towards wider adoptibembedded vision systems within the smart
facilities & smart building management domain. sThew approach would provide advanced features
in an emerging market, where and improved perfoomaand reduced energy consumption will
facilitate the use of embedded cameras not onlgimple sensors, but as a distributed cognitive

system, going beyond smart surveillance.

The motivation in this use case is to test andhtitegly improve the approach (together with the
use case in T5.3), in order to identify a minimurable service (MVS) that can be provided to
different clients as a comprehensive solution witine Smart Facilities and Smart Buildings

Management domain.

The motivation for this use case is based on thenpal use of a CPVS to provide different
functions/profiles depending of different situasorThat is, to explore the potential of COPCAMS
approach, -with embedded and powerful vision systetim sense the surrounding environment, and
react to changes. In this case, the field test &nexplore the possibility of a COPCAMS systent tha
is initially working in “asset recognition mode” thange to “surveillance mode” to detect intrusions
in the specific zone. This can be used in diffemtironments, as public or industrial facilities t
control different assets (trolleys in airports, @omers in maritime cargo terminals, special vedsdh

public/private facilities e.g.)
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3.4.2 Scenario Definition

The field test scenario is initially simulated if€TL facilities, and the setup of the system is as
follows: A COPCAMS platform (initially a PC+GPGPUut extensible to STHORM platform) with a
single camera will be placed to monitor a workimgaa where specific assets must be identified.
These assets will be identified thanks to a spedaifiage pattern, and will remain stopped during a
timeframe of 2-4 seconds, simulating a routine nt

Figure 10: Sample Vehicle with Specific Pattern

On a particular moment (triggered by the end ofkivay time or by a specific simulated alarm
that will be captured by the system), the systethbei required to change to surveillance mode, and
detect human intrusions in that specific zone. fesalts will be registered, in order to be sen&to
main station, that could feed a business intelligaimit, a dashboard or a decision making system.
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Figure 11: Sample Vehicle with Specific Pattern

3.4.3 Evaluation Strategy and Measurements

The described scenario will take place in a colgdoarea, with stable illumination. We assume

that the system is correctly installed to coverrttanitoring area and the cameras are calibrated.
Under these conditions, the following metrics Wil measured for the performance evaluation.

« Detection Rate:For both modes, the detection rate will be meakure

+ False Alarm Rate: For both modes, the false alarm rate will be messu

The evaluation strategy will follow an iterativeopess, where the algorithms, and the overall
COPCAMS performance will be analyzed in differearget platforms.

3.5 Face Detection System

This section describe th&ace Detection Systerdeveloped by CEA using their HOE2
methodology.

3.5.1 Motivation

CPVS development teams have to cope with usualtreanis of industrial organizations
developing embedded systems, including: (1) EnBftd- Engineering: the full development cycle
goes from requirement formalization to the finakgration and assessment of the application on its
platform. (2) Incremental & collaborative developrtheTo organize efficiently the work of large
teams, it is critical to regularly distribute amttegrate work, and to measure progress towards the

objectives.
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The motivation of this lab. experiment is to meastine benefits of a well-organized development
method and assess its benefits, especially foegswhen a given applications has to be specialized

when for several platforms.

3.5.2 Scenario Definition

The CEA scenario will be to develop a Face Detec8ystem (FDS) using th&lOE)? method
[24-27]. The FDS will be made of applicationrunning on glatform The development of each of
those two systems will be initiated separately ftbeir ownuse casegresented Table 7 and Table 8
respectively. The platform’s use cases will be enptnted on two different hardware platforms: One

made of a Raspberry and an Arduino, the other rofda i.MX6 board.

Table 7: Use Cases of the Face Detection System'spiigation

D | Causality Name
Description

1 | Primary ' Detect presence
The actor wants to know when somebody enter thetored zone.

2  Primary . Track faces
The actor wants to track faces of people entehiegitonitored zone.

3 | Secondary ' Toggle camera control
The actor wants to switch between manual and automnacking modes.

4 | Secondary ' Query camera control mode
The actor wants to know the current tracking mode.

5 | Secondary . Orientate camera
The actor set the camera’s orientation.

6 | Secondary ' Query camera orientation
The actor wants to know the camera’s current caiéoni.

Table 8: Use Cases of the Face Detection System'atRirm
ID  Causality . Name
Description

1  Primary . Install firmware
The actor installs the new firmware on the platform

2  Primary . Execute the application
The actor executes the application.

3 Secondary . Query date and time
The actor wants to know the current date and tim¢he platform.

4  Secondary _ Set date and time
The actor sets the date and time on the platform.

5 Secondary . Query firmware version
The actor wants to know the current version offthmeware.

3.5.3 Evaluation Strategy and Measurements
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The goal of this experiment is to assess the gair{d) code reuse, (2) tool reuse and (3) dev
elopement time while developing an applicationdeveral platforms. We will compare the amount of
hand written code against generated code and tme ref code generation tools across the two
platforms. We will also measure the time spent @mdeting and developing the application and the

two platforms.

4 Demonstrator Architecture and Methodology

The field test scenario described in Section 21 lvei configured as a distributed heterogeneous
sensor architecture as illustrated in Figure 12his configuration, each fixed wide FOV cameral wil
be used as a “weak observer” whose task is toraamtisly monitor the scene of interest with low
computational resources, seeking salient evendtamrgces. The PTZ camera will be used as an
“expert observer” with much higher computationasagrces. When an interesting event/target is
detected by a weak observer, the “weak observessgm the corresponding information (pixel
locations and extracted features of the detectedtéarget) to the expert observer. Then the “dxper
observer” looks into the detected event/target @odides the final decision. This approach is to be

realized by ASELSAN's proposed smart surveillanadidecture.

In this architecture, the use of a high quality RlBfnera enables the system to gather richer sets
of information, i.e., spatial and temporal featyunekich cannot be obtained by a fixed FOV camera
only system. For instance, extracting histogramgiEdient features (HOG) using low resolution
images typically results in noisy features due @y gradients, and in turn degrades overall system
performance. This issue can be rectified by zoontagability of a high quality PTZ camera.
Furthermore, the use of a PTZ camera facilitates tmnual visual inspection of a detected
event/target, which is significantly critical inminating highly undesired false alarms/ misdetetdi
as well as providing information on corner casest ttan be corrected by improving the system

accordingly.

The proposed cluster based smart surveillance mysta provide wide area coverage with the
advantages described above at a low overall ctiss. i$ due to the use of multiple cheap, wide and
fixed FOV cameras providing full coverage of a wakea at all times; and the use of a single PTZ
camera providing higher quality coverage of a sengtiortion that is of interest iffwhen necessary.
The fixed FOV cameras transmit metadata or enceilieb frames only when salient event/target

detection occurs, reducing data transmission amgtpoonsumption.
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Figure 12: Distributed heterogeneous sensor architéure

The detailed hardware and software architectureswieak observer” and “expert observer” as
well as the methodology for using these architestun the distributed surveillance application are

given in the following sections.

4.1 Weak Observer Architecture

Each weak observer composed of fixed wide FOV camaed a local processing unit with low
computational resources. The main task of weakrgbsds to continuously monitor the scene of
interest and seeking salient event/target trades.ldcal processing unit on weak observer composed

of

Intel Core i7-4860EQ CPU

Intel Iris Pro 5200 Embedded (same die) GPU
AMD E6760 Embedded (PCle) GPU

4GB DRAM

256 GB SSD HD

a > w DN PRE

In the configuration of weak observers, the videmrfes will be captured via Ethernet port and the
captured frames will be feed to the processing unit

The software components that will be run on thegssing unit are listed below.

A Motion Detection: The motion in the scene of et is detected and registered at each pixel
location in the imaging plane, if it is significaine., above a certain threshold.

B Block Processing: The motion detected in stegs Adrocessed and grouped into rectangular
and overlapping blocks of pixels in the imagingn@aThen, blocks with significant amount motion

are detected and registered.
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C Feature Extraction: A certain (pre-defined) setvisual features are extracted from each
detected block.

D Decision: The extracted features for each dedeoleck are processed and a decision is made:
I) The activity in the corresponding block is immegdly labeled as human/car/other; or ii) There is
not enough evidence and the extracted featureg alth the pixel coordinates are propagated to the

central station for a detailed analysis.

1. Motion Estimation: In this algorithmic block, théxpl locations where some predefined
motions are detected and the bounding box locatiglhbe produced as output.

2. Object Selection: The object corresponding to tlygdst/most accurate/... will be selected
among all the detected objects in order to repogie object to the main station.

3. Classification: Features for the detected objedide produced.

When any moving object is detected, the weak olesewill send the pixel locations of the upper
left and lower right corners of the bounding boxl éime extracted features for the detected object

to the main station through Ethernet.

4.2 Expert Observer Architecture

The expert observer composed of narrow FOV PTZ caraed a local processing unit with high
computational resources. The main task of expestoler is to merge the information received from
multiple weak observers and decide final decisimsut the detected objects. The processing unit on

expert observer composed of

Intel Core i7-4470 CPU

NVIDIA GTX780 or GTX 980 or Quadro K6000 or Quadvi000 GPU(s)
16 GB DRAM

256 GB SSD HD

p w DN PF

In the configuration of expert observer, the vifiemes will be captured via Ethernet port and the

captured frames will be feed to the processing unit
The software components that will be run on thegssing unit are listed below.

A. Object Localization: The 3D coordinate of the detdabject will be estimated from the pixel
locations of the detected object received froneast two weak observers.
B. PTZ Steering: The PTZ camera will be steered talt#tected object coordinate by converting

the 3D coordinate to the azimuth and elevationtiataangles of PTZ camera.

ARTEMIS-JU — GA n°332913 2016-01-07 14:13 34



Consortium Confidential COPCAMS Cognitive & PercepCameras

C. Multi-view Classification: Features for the detetimbjects will be produced from the video
frames captured from PTZ camera. Then, these fesmiamd the features received from weak
observers will be merged and classification resilltbe produced.

D. Superresolution: From multiple frames captured fribrea PTZ camera, the super resolved

video frames will be monitored.

1. Object Localization: The 3D coordinate of the detdmbject will be estimated from the pixel
locations of the detected object received froneast two weak observers.

2. PTZ Steering: The PTZ camera will be steered taldtected object coordinate by converting
the 3D coordinate to the azimuth and elevationtiaiaangles of PTZ camera.

3. Multi-view Classification: Features for the detetimbjects will be produced from the video
frames captured from PTZ camera. Then, these fesatamd the features received from weak
observers will be merged and classification resilltbe produced.

4. Superresolution: From multiple frames captured fribra PTZ camera, the super resolved

video frames will be monitored.

4.3 Methodology

The performance of the distributed heterogeneonsosearchitecture to be tested in demonstration
will be measured based on the following method@sgiThe performance metric measurements will

be handled in two categories, i.e., system funatiancuracy and system resources.

4.3.1 System Functional Accuracy

4.3.1.1 Classification

To measure the classification accuracy, video feawil be captured from the monitored area and
stored to be used in training and testing the ifleagon algorithm. Based on the demonstration
scenario, there will be only one moving objecthia scene at any time. These objects can be a \galkin
person or moving car with a speed less than 40 lan/moving vehicle other than a car such as
motorcycle, pickup truck, etc. Throughout the tragnphase of the classification algorithm, the wvide
frames can contain only a walking person or a ngpdar. Therefore, any moving object other than a
“walking person” or “moving car” will be defined &sther” in the classification. To measure the
accuracy of the classification algorithm, we finsanually label each frame as “human”, “vehicle”,
“other” and “normal” and then the following evaligat metrics will be calculated by comparing the

results of the classification algorithm with thédtéed video frames.

» Detection Rate: The empirical probability of that a truly “othedbject is labeled as

“other”.
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False Alarm Rate: The empirical probability of that a truly “normadbject is labeled as
“other”.

» Classification Accuracy: This is calculated for only “normal” objects. Tleepirical
probability of that a truly “human activity” is labed as “human activity”. This is the

classification accuracy for “human activity”; arids defined similarly for the vehicles.

+ Detection Rate:Give the textual and mathematical definition
* False Alarm Rate: Give the textual and mathematical definition

» Classification Accuracy: Give the textual and mathematical definition

4.3.1.2 Superresolution

In order to measure the superresolution accurdeyuser experienced quality measurement will
be used. Both the original and superresolved imagiéde shown to the users and the users will be
asked to give a quality number between 0 and § {Bd worst and 5 is the best quality) based on the

following three criteria [22],

1. Fidelity Preserving: Does the superresolved image the same general appearance as the
original image (0: Completely different, 5: The sgm

2. Detail Enhancing: Does the superresolved imageshagp features where they are expected
(O: Worst result, 5: Best result)

3. Smoothness: Does the superresolved image has giytimhere it is expected and avoid

unnatural high-frequency artifacts (0: Wors reshiltBest result)

Each of the above criteria will be measured oveerssd images by different users and will be

averaged to determine the quality metric.

4.3.2 System Resources

4.3.2.1 Total Transmission Bandwidth

In order to measure the bandwidth resources, wk wsié a network analyzer tool such as
Wireshark and count the number of bits receiveth@atmain station within a unit time or triggering
event. For the same scenario, the measurement beillperformed for both the distributed
heterogeneous sensor architecture and centralizhdeture. In the former, weak observers willdsen
only the pixel locations of the detected object anfkature vector corresponding to the detected
object. On the other hand, in the centralized &chire, video frames will be sent to the mainiatat
continuously. The transmission bandwidth comparisbetween centralized and distributed

architectures will be used as a quality metric rmesment for distributed architecture.
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5 Validation

5.1 State of The Art at Project Start

As of 2015, the dominant approach for large areaedilance applications is the IP camera based
centralized architecture. IP camera based videweBlance has been gaining popularity over the
traditional analog systems since early 2000s. AraBred architecture uses a master database tbcate
on a central control server. All configuration infwation, related to the cameras and NVRs/DVRs that
constitute the installation, as well as all contienfransmitted to the master database; for sulesgqu
access and analysis [23]. The main drawbacks m d@nthitecture can be listed as [EBfeur !

Source du renvoi introuvable.

» Continuous communication of users with the centaoffice requires expensive
infrastructure of high-end switches and also ugegracious bandwidth

* In case of WAN failure, remote users are left stexhwith no access to the live and
recorded video from cameras which may actuallyrbéhe local network

* All users of the system rely on the central databfas login and license permission
checks. If this database fails, the entire syswis. f

 As and when more cameras and users at remotedpsatire added to the network,
bandwidth becomes congested.

» The network and servers need to cope with increleseds of traffic — database changes,
user authentications, storage and transmissioacoirdings.

» Surveillance cameras do not respect demanding resgents placed on privacy issues

specially for a system in public places

Recently, decentralized IP cameras have been inteatito the security and surveillance market.
These decentralized cameras have on board proggssiver and storage to perform low complexity
processing tasks such as image enhancement andnfactivity detection. However, the amount
processing power available on board is limited #redresulting architecture is not truly distributesd
independent cameras do not collaborate to perfogonamon security/surveillance task. Typically,
the processing done on the end node decentralRethineras are not utilized at the center or at

another end node camera.

This situation also applies to other domains, skeart facility and building management, where
additionally, the traditional vision of a verticalstructured market prevented the adaptation to a
growing demand of dynamism and flexibility in thentext of Smart Facility Management. As
explained above, the market is demanding not ontyremefficient, flexible and autonomous

surveillance systems, but also the integrationidé® systems to provide more data and information
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for energy management and enhanced building pediocen The Cognitive & Perceptive Video
Systems (CPVS) enabled by COPCAMS will represethisicontext a significant step towards wider
adoption of embedded vision systems within the srfegilities & smart building management

domain; providing advanced features in an emergiagket.

QMUL began the implementation of a full pipeline faulti-target detection and tracking based
on PHD-PF from a MATLAB prototype developed in heuJarget detection is carried out using
Histogram of Oriented Gradient approach [16]. ThATMAB implementation of PHD-PF has the
drawback of having large latency, especially if @hat running on an embedded platform, such as
NVIDIA Jetson TK1. Therefore QMUL developed a C+ersion of PHD-PF that will allow its

parallelization at a lower programming level thaAM.AB.

5.2 Targets at Project End

COPCAMS project will attempt to resolve the drawksaof centralized surveillance architecture
by proposing and designing heterogeneous distidlsueveillance architecture. Unlike the centralized
architecture, in a distributed architecture theadatspread across the system, generally closééoew

it is produced or needed.

In COPCAMS architecture, the cameras distributesr twe monitored area have local processing
units and analyze the video frames to decide whdttere is an activity on the scene or not. The
activity can be defined based on the video suasiie task, such as detecting a specified object If
activity is detected on the scene, it is not n@esieind any information to the main station. Heme,

can eliminate the unnecessary data transmission.

Our main target is to improve the current (stat¢hefart) centralized surveillance architecture in

the following points:

« Bandwidth: In the distributed surveillance architecture, theneras in the weak observer
will not send live video frames to the main statitmstead, they will analyze the video
frames in the local processing unit to detect divicthat can be defined based on the
mission. Then, if any defined activity is detectdwey further analyzing the activity and
extract the features that describe the activityeAperforming the processing, the pixel
locations and features of the detected object beéllsent to the main station. In this
structure, network bandwidth is not used for camiims communication with remote
locations. Data is streamed to the central staididy in event of an operational incident.
Hence, overall communication cost is expected twadese.

» Distributed Computing: As opposedo the centralized surveillance architecture, since

the weak observers have local processing unit tisere need to analyze the whole video
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frames on the central station. Some of the tasksoore part of the whole task can be
performed on the node outside of the central statibhis approach decreases the
computational complexity requirement in centraltista Hence, the central station in
distributed architecture can be cost effective an erform much complex tasks as
compared to the centralized architecture.

» Scalability: With distributed architecture, additional cameaasl users can be added to a
sub-location to increase the coverage area withinmainincrease to network traffic and
computational capacity of the central station.

» Security and Privacy: we will improve support for privacy protection bgnplement
algorithms of anonymization and encryption scherf@, videosurveillance vision

systems.

6 Current State of the Demonstrator

The current status about the Large Area Survedladpplication Demonstration can be

summarized as follows.

* Camera Installation: Two Samsung SNP-3120VH IP cameras were installedhe
outside of the building in ASELSAN's facility. Orad these cameras will be used as fixed
wide FOV camera in weak observer and the othervahde used as narrow FOV PTZ
camera in expert observer. In this configuratidme target object location will be
estimated from the pixel locations of a single caamwith the assumption that target
object is on the floor. Then, we will try to indt#the third camera before the final demo
and use two fixed cameras to estimate target obygbbut any assumption about the
target location.

* Network: Two Samsung SNP-3120VH IP cameras are connectedet?ASELSAN'’s
local network and video capture and steering fonetiities were successfully tested.

» Processing Units:There will be two different types of processingtsito be used in weak
observer(s) and central station. The processinginnieak observer will be configured
with low computing power (Intel Core i7-4860EQ, dhHD 5200 GPU same die GPU
and possibly an embedded grade GPU) and the oexert observer will be configured
with high computing power (Intel Core i7-4770 wittultiple high end GPUS)

» Algorithms: Single camera classification algorithm design ilATLAB has been
completed and we are working on algorithm portioagopenCV. Activity detection and
anonymization algorithm are currently ported on @ARIS platforms (iMX6) to ensure

privacy protection.

ARTEMIS-JU — GA n°332913 2016-01-07 14:13 39



Consortium Confidential COPCAMS Cognitive & PerecepCameras

» Data Collection: We have just started to collect the video frames dlassification
algorithm training. We capture a video from thergcef interest. Since this video is going
to be used for training and testing purposes, @ukh contain all kind of activities
regarding “human”, “vehicle” and “other” activitiedNe split this video into two
segments. In the first segment, it contains ongyrtbrmal, i.e., non-other, activities such
that the classification algorithms are trained bing this segment. In the second segment,
there are also the “other” activities in additienthe normal ones. By using this segment,

the classification algorithms are tested for crnealédation and performance evaluation.

QMUL is currently working towards the parallelizati of PHD-PF and the computational
performance achieved so far is reported in Figute The parallelization is done for GPGPU on
NVIDIA Jetson TK1. This performance improvementoistained via parallelization of a clustering
step (Expectation-Maximization — E-M) within PHD-PFhe clustering step is used by the PHD-PF to
estimate the final state of the targets. The E-M waginally developed with OpenCV, whereas the
parallelized version is developed in CUDA. Figui shows the power consumption in the case of
CPU version of the code and GPU version of the cdtde power consumption is slightly higher for
the GPGPU version but still comparable to thathef CPU version. QMUL is continuing with the
optimization of the algorithm via the use of OpeniiRl GPGPU functions provided in OpenCV, and
the goal is to achieve
tracking

NVIDIA Jetson TK1 - PHD-PF tracking - OpenCV 2.4.10 + CUDA E-M
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Figure 13 : GPU vs. CPU performance of NVIDIA Jetson TK1 in thecase o
PHD-PF tracking algorithm. The horizontal axis represents the variation of th
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Figure 14: GPU vs. CPU power consumption on NVIDIAJetson TK1 in the case of PHD-PF tracking algorithm.
The horizontal axis represents the variation of thgarticles per target. The vertical axis representshe average power

consumption (MA).

7 Conclusion

The specifications of the demonstration activifi@sthe large area surveillance applications are
described in two categories, i.e., a field test &alwbratory experiments. The system architecture
including the hardware and software configuratiand the methodology for evaluating field test are
explained. The state of the art at project stadi thie expected progress with COPCAMS project are
explained. The metrics and measurement strate@QHCAMS solutions on large area surveillance
applications are described. The results exploreevajuating the field test will be reported on "gar

Area Surveillance Applications Report" at the ehthe COPCAMS project.
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