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1 Introduction 

This document specifies the demonstration activities to show the effectiveness of COPCAMS 

solutions for the large area surveillance applications. The demonstration activities will be performed in 

two categories, i.e., a field test and laboratory experiments.  

The scenarios for field test and laboratory experiments are explained in Section 2 and Section 3, 

respectively. In Section 3.1, the system architecture including the hardware and software 

configurations and the methodology for evaluating field test are explained. The validation of 

COPCAMS solutions on large area surveillance applications is given in Section 5 by explaining the 

state of the art at project start and the expected progress with COPCAMS project. Section 6 

summarizes the achievements for field test and the document concludes in Section 7. 

2 Demonstrator task 

This section describes the field test scenario for “Large Area Surveillance Application” that is 

based on the requirements given in “D1.1 & D1.2 – Summary of Functional & Non-Functional 

Description” and use cases defined in “D1.4 – Summary of Use Cases and Field Test Definition” 

documents. The evaluation strategy and measurements to be collected are also described in this 

section. 

The aim of Large Area Surveillance Application field test is to effectively monitor large areas with 

multiple cameras and extract meaningful information about the monitored area such as locating and 

classifying the moving object(s). The moving objects in the monitoring area are classified as ‘human’, 

‘vehicle’ or ‘other’ based on either only the view captured by the camera at the central station or all 

the views available, i.e., views of the end node cameras in addition to the one at the central station. 

2.1 Field Test Scenario 

The field test will be performed in a test area in ASELSAN’s facility with the test setup illustrated 

in Figure 1. In this setup, there will be two fixed wide field of view (FOV) cameras and one narrow 

FOV Pan Tilt Zoom (PTZ) camera located on the surface of the building in the test area. The setup 

parameters of the cameras are given in Table 1. In demonstration, both for the fixed cameras and PTZ 

camera, Samsung SNP-3120VH camera will be used with different configurations. The specifications 

of Samsung SNP-3120VH camera are listed in Table 2. While, two fixed wide FOV cameras will be 

used in end node configuration, PTZ camera will be used in main station configuration as detailed in 

Section 3.1. 
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Based on this configuration, the following test scenario will be applied for several times with 

different conditions to measure the performance metrics that are defined in Section 2.2. The “target 

object” in the following scenario is used for “human”, “vehicle” or “other1”. 

Demonstration Scenario 

Throughout the demonstration, the cameras will be placed to monitor a restricted area, where the 

entrance is forbidden. In this case, a single “target object” will pass through the monitored area with 

speed in a range of 2.5-10 m/s. Then, Fixed Wide FOV Cameras on end node will detect a motion and 

send a meta data consists of the pixel locations of the detected “target object” and the extracted 

features about the “target object” to the main station via wired or wireless communication 

transmission. After that, on main station, the geographical coordinate of the moving object will be 

estimated from the pixel locations of the detected “target object” received from the end nodes. Then, 

PTZ camera on main station will be steered to the estimated position of the “target object”. After 

steering, PTZ camera will start to capture the images and extracts features about the “target object”. 

Then, multi view classification algorithm will be performed to show the class of the “target object” 

with a specified icon for “human”, “vehicle” and “other”. In meantime, the images captured by the 

PTZ camera will be processed with super resolution algorithm and the super resolved image will be 

monitored. If the detected “target object” is human or vehicle, main station commands the selected 

Fixed Wide FOV Cameras to stream their raw video and the received video streams from end nodes 

and the PTZ camera will be stored on main station for the evidence. 

 

Figure 1: The illustration of test setup for Large Area Surveillance Application filed test 

                                                      

1 “Other” term is used as any object that is large enough to be detected with motion estimation and different 
than the object used in training phase. 
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Table 1: The setup parameters of the cameras that are illustrated in Figure 1. 

Camera Type FOV Relative Positions Rotation 

 X Y Z Azimuth Elevation 

Fixed Horizontal: 

54.44˚ 

Vertical: 

42.32˚ 

10 0 7 0 -10 

PTZ Horizontal: 

4.62˚ 

Vertical: 

3.58˚ 

0 0 0 0 -10 

 

Table 2: The specifications of Samsung SNP-3120VH camera 

Camera Parameter Value 

Video 

Imaging 

Device 

1/4" Ex-view HAD PS CCD 

Total Pixels  NT : 811(H) x 508(V), PAL : 795(H) x 596(V) 

Effective 

Pixels  

NT : 768(H) x 494(V), PAL : 752(H) x 582(V) 

Scanning 

System  

Progressive(VPS ON) (If WDR on, Interlaced Scan) 

Frequency  NT : H : 15.734KHz / V : 59.94Hz, PAL : H : 15.625KHz / V : 

50Hz 

Horizontal 

Resolution  

Color : 600 TV lines 

Min. 

Illumination 

 

Color : 0.7 Lux (F 1.65, 50 IRE, VPS OFF), 0.001 Lux (Sens up 

512X) 

B/W : 0.07 Lux (F 1.65, 50 IRE, VPS OFF), 0.0001 Lux (Sens up 

512X) 

S / N Ratio  50dB 

Video Out  CVBS : 1.0 Vp-p / 75Ω composite 

Lens 

Focal Length 

(Zoom Ratio) 

 

3.69~44.32mm (12X) 
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Max. 

Aperture 

Ratio  

F1.65(Wide) / F2.01(Tele) 

Angular Field 

of View  

H : 54.44˚(Wide) ~ 4.62˚(Tele) / V : 42.32˚(Wide) ~ 3.58˚(Tele) 

Min. Object 

Distance  

0.2m (Wide) / 0.8m (Tele) 

Lens Type  DC Auto Iris 

Pan / Tilt / 

Rotate 

Pan Range  360˚ Endless 

Pan Speed  Preset : 650˚/sec, Manual : 0.05˚/sec ~120˚/sec (Turbo:200˚/sec) 

Tilt Range  -5˚~185˚ 

Tilt Speed  Preset : 650˚/sec, Manual : 0.05˚/sec ~120˚/sec 

Network 

Ethernet  RJ-45 (10/100BASE-T) 

Video 

Compression 

Format 

 

H.264, MPEG4, MJPEG 

Resolution 

 

NT : 704x480, 640x480, 352x240, 320x240 

PAL : 704x576, 640x480, 352x288, 320x240 

Max. 

Framerate  

NT : 30fps / PAL : 25fps 

Video Quality 

Adjustment 

 

H.264/MPEG4 : Compression Level, Target Bitrate Level Control 

MJPEG : Quality Level Control 

Bitrate 

Control 

Method 

 

H.264/MPEG4 : CBR or VBR 

MJPEG : VBR 

Streaming 

Capability  

Multiple Streaming (Up to 10 Profiles) 

IP  IPv4, IPv6 

Protocol 

 

TCP/IP, UDP/IP, RTP(UDP), RTP(TCP), RTSP, NTP, HTTP, 

HTTPS, SSL, 

DHCP, PPPoE, FTP, SMTP, ICMP, IGMP, SNMPv1/v2c/v3(MIB-

2), ARP, 

DNS, DDNS 



Consortium Confidential COPCAMS Cognitive & Perceptive Cameras 

ARTEMIS-JU – GA n°332913 2016-01-07 14:13 12  

Security 

 

HTTPS(SSL) Login Authentication 

Digest Login Authentication 

IP Address Filtering 

User access Log 

Streaming 

Method  

Unicast / Multicast 

Max. User 

Access  

10 users at Unicast Mode 

Web Viewer 

 

Supported OS : Windows XP / VISTA / 7, MAC OS 

Supported Browser : Internet Explorer 6.0 or Higher, Firefox, 

Google 

Chrome, Apple Safari 

Central 

Management 

 

Software 

NET-i viewer 

 

2.2 Evaluation & Measurements 

The described scenario in Section 2.1 will take place outdoor under ‘sufficient’ and ‘stable’ day 

light or artificial illumination with enough lux percentage, in addition to that no background change is 

allowed to happen, e.g., an object of the background such as a parked bicycle is assumed to stay in its 

place with no motion throughout the scenario. We assume that the system is correctly installed to 

cover the monitoring area and the cameras are calibrated. 

Under these conditions, the following metrics will be measured for the performance evaluation.  

• Detection Rate: For an evaluation of the first step in the single camera solution, i.e., the 

“other” / “anomaly” detection step, the detection rate of anomalies will be measured at a 

given range of bearable false alarm rates.  

• False Alarm Rate: For an evaluation of the first step in the single camera solution, i.e., 

the “other” / “anomaly” detection step, the false alarm rate of anomalies will be measured 

at a given range of desired detection rates.  

• Classification Accuracy: In the set of observations that are labeled as “nominal”, i.e., 

“not anomalous” or “other”, the accuracy for the task of “human” vs “vehicle” 

classification will be measured.  
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• Total Transmission Bandwidth: For an evaluation of communication overhead in 

distributed surveillance architecture, the total transmission bandwidth for a unit time or 

unit event will be measured.  

3 Related Lab Experiments 

3.1 Multi-target Detection and Tracking Experimental Setup 

This section describes the Probability Hypothesis Density Particle Filter (PHD-PF) [14] that is a 

multi-target tracker developed by QMUL. PHD-PF is tested on publicly available video datasets and 

its performance is quantified using state-of-the-art tracking metrics. 

3.1.1 Motivation 

The aim of this work is the algorithmic optimization of PHD-PF in order to improve the speed 

performance (target: to achieve 15 fps) on embedded platforms (e.g. NVIDIA Jetson TK1). PHD-PF 

estimates the state of targets by propagating over time the cardinality (number) of targets. Being a 

Particle Filter-based approach, many operations have to be executed for each particle by making this 

algorithm computationally expensive while there is a version of the PHD filter that uses a closed form 

solution based on Gaussian Mixtures (GM-PHD) [15], which is computationally cheaper than the 

PHD-PF. However, GM-PHD does not offer the flexibility of choosing arbitrary target motion models 

and likelihood functions. This motivates our choice for the PHD-PF algorithm for multi-target 

tracking. 

3.1.2 Scenario definition 

We tested PHD-PF for monocular person tracking using. We used publicly available surveillance 

datasets, specifically Towncentre (http://goo.gl/aQiSdS), PETS2009-S2L1 (http://goo.gl/UNCCCl), 

TUD-Stadmitte (https://goo.gl/4MhNlQ) and iLids Easy (http://goo.gl/sfqYoT). These sequences 

contain a variable number of people as well as challenging situations of occlusions, motion variations 

and scale changes. 

PHD-PF is developed in OpenCV running of CPU, and it is tested on a desktop computer with 

Intel i7 CPU 3.4GHz and 16Gb RAM. Object detection is performed using the OpenCV version of a 

person detector based on Histogram of Oriented Gradients (HOG) [16]. The object tracking algorithm 

is wholly developed by QMUL. The pipeline is tested as an end-to-end system: a video sequence is 

given as input and object trajectories are provided as output. Performance is evaluated using ground-

truth information for object locations. 

3.1.3 Evaluation strategy and Measurements 
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Tracking performance is quantified using Multiple Object Tracking Accuracy (MOTA), Multiple 

Object Tracking Precision (MOTP), Precision (P), Recall (R) and Identity Switches (IDS) [13]. 

MOTA is computed as 

���� = 1 − ∑ 	
��� + 
���� + 
����������
∑ ������

, 

where FNk is the number of false negatives, FPk is the number of false positives, IDSk is the 

number of identity switches and vk is the number of ground truth targets at time k. 

MOTP is computed as 

���� =	
∑ ∑ ���� ∩  ���

���� ∪  ���
�"#$%
���&#&%

'(���

∑ ������
, 

where ��� is the estimated bounding box and  �� is the ground-truth bounding box of target t at k, 

)*'*�  and )+',�  are the initial and final time instant of target t. 

Precision is computed as 

� =	 |��|
|��| + |��| 

and Recall as 

. =	 |��|
|��| + |�| 

where |TP|, |FP| and |FN| are the total number of True Positive, False Positive and False Negative 

trajectory estimations in the video sequence, respectively. An estimated trajectory is considered True 

Positive is the bounding box overlaps that of the ground truth at least for the 50%. 

Sample results are shown in Table 3 & 4 by using 3000 and 300 particles per target, respectively. 

Tracking accuracy is generally higher in the case of PHD-PF using 3000 particles per target. A larger 

number of particles allows PHD-PF to have a better approximation of the target state space (more 

robust against noisy detections) and a better discrimination of targets over time (lower IDS). 

Fragmented tracks are also the cause of IDS because the same object will be associated to multiple 

identities by the PHD-PF. A large number of particles reduces the track fragmentation problem; this is 

why the number of IDS is lower in the case of 3000 particles. The major drawback of a large number 

of particles is the computation time per frame. During the experiments we measured that the 
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computation time per frame was between 2000 to 5000 ms per frame in the case of 3000 particles per 

target, whereas the computation time in the case of 300 particles per target was between 200 and 600 

ms per frame. The large execution time in the case of 3000 particles per target is due the large number 

of targets inside Towncentre. Figure 2 shows an example of tracking result on Towncentre where a 

numerous targets are simultaneously tracked. In the case of TUD-Stadtmitte (Figure 3) the targets are 

fewer leading to a smaller computational time. 

Table 3: Tracking performance of PHD-PF using OpenCV HOG person detector. 3000 particles per target are used. 

Dataset MOTA MOTP Precision Recall IDS 

Towncentre 0.34 0.66 0.67 0.69 786 

PETS2009-S2L1 0.12 0.63 0.61 0.39 106 

TUD-Stadtmitte 0.58 0.75 0.85 0.73 27 

iLIDS AB Easy 0.49 0.71 0.82 0.63 80 

 

Table 4: PHD-PF tracking performance using OpenCV HOG person detector. 300 particles per target are used. 

Dataset MOTA MOTP Precision Recall IDS 

Towncentre 0.34 0.66 0.68 0.68 894 

PETS2009-S2L1 0.15 0.63 0.63 0.40 93 

TUD-Stadtmitte 0.58 0.75 0.86 0.73 40 

iLIDS AB easy 0.50 0.71 0.84 0.63 87 

 

 

Figure 2: Example of PHD-PF tracking result on Towncentre where a large number of targets is tracked. Some 

of the targets are not tracked to do miss-detections. Semi-transparent box shows the estimated target state. Green box 

contour shows the detection. 
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Figure 3: Example of PHD-PF tracking result on TUD-Stadtmitte. Semi-transparent box shows the estimated target 

state. Green box contour shows the detection. 

 

3.2 Distributed Detection of Events Based on WSN For Large Area 

Surveillance 

This section describes the distributed detection system, based on WSN, proposed by CTTC as well 

as the specification of the scenario and the field tests strategy. 

3.2.1 Motivation 

Herein CTTC proposes the use of a distributed detection system for surveillance applications based 

on a Wireless Sensor Network (WSN). Moreover, the scenario definition and the associated field tests 

are described as well as the evaluation strategy and the necessary measurements. The aim is to 

complement the video surveillance system, proposed by other partners. Namely, the proposed 

detection system is based on sensors which are not based on video information but on other type of 

information e.g. sonar sensors. This approach permits to complement the video surveillance system in 

situations where the video information may be degraded, e.g. at night, in rainy or cloudy situations or 

in areas that cameras do not monitor properly. Moreover, the proposed WSN based system may 

provide useful side information for the main video surveillance system. For instance, the use of sonar 

sensors leads to obtain the distance of the detected object or person. And this distance can be used in 

the main station of the video surveillance system as side information to estimate the position of the 

detected object and to steer the PTZ camera properly. 

3.2.2 Scenario Definition 

The field test scenario is located in the CTTC facilities and the setup of the detection system is as 

follows. An array of multiple sonar sensors is considered to take the measurements, see Figure 4. The 

sonar sensors used for the experiments are the LV-MaxSonar-ez1 MB1010 by Maxbotix, whose main 

features are given in table 3, see [19] for further information. Herein this type of sensors are 
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considered to detect objects and persons in the perimeter of the monitored area. Each sonar sensor is 

connected to an IEEE 802.15.4 WSN node, namely the Z1 motes from Zolertia are chosen, whose 

main features are given in table 4, see [21] for further information. The connection between the sensor 

and the WSN node is done through an analog port (the Phidgets 5V port in the Zolertia Z1 mote). 

Moreover, the sensors provide a voltage level, related to the measured distance according to the next 

formula: 

/ = 2.54458  

Where / is the detected distance in cm. 45 is the voltage related to the measurements that the 

sensor outputs between 0 V and 5 V. The scaling 8 accounts for the normalizations factors related to 

the volts per inch provided by the sensor and the quantization levels of the Zolertia Z1 ADC. Finally, 

the factor 2.54 converts from inches to cm. 

On its turn, the WSN processes the measurements provided by the sonar sensors in a distributed 

manner. Namely, each node takes a buffer of measurements, which is provided by the sensor plugged 

to it, and applies a detection algorithm. Several alternatives will be considered to implement these 

algorithms. On the one hand, a detection method based on a heuristic threshold will be implemented. 

Where the threshold will be set to a value higher than the noise variance and will be determined 

experimentally. The other detection algorithm that will be considered is a Generalized Likelihood 

Ratio Test (GLRT), which is a conventional method widely applied in statistical detection theory, see  

e.g. [18], and consists on deciding a positive detection based on the next test statistic: 

78�	9� > ;
<=�

'�>
 

Where,  is the number of samples in the processing buffer, 8	9� is a sample provided by the 

sensor and ; is a threshold whose value depends on the noise variance and the desired probability of 

false alarm.  

Afterwards, the decision of each node is sent via a wireless link to a fusion centre. Note that 

thanks to the distributed approach each node has to send only one bit after each processing buffer of 

length , instead of sending the  samples to the fusion centre. Namely, a bit with value 1 will be sent 

in case that an object is detected.  At this point, it is important to mention that the software of the 

WSN nodes (needed to carry out the tasks described above) runs on Contiki OS, an open source 

operative system that is widely adopted for the WSN and the Internet of Things (IoT) worlds [17]. 

Regarding the fusion centre, it consists of an IEEE 802.15.4 Zolertia Z1 node, which acts as a 

WSN sink, and is connected via USB to a Raspberry Pi 2, which implements the fusion algorithm and 
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the communication with external systems. Namely, the data fusion method receives the detection 

decisions taken by each node and combines them to improve the detection performance compared to 

the one of a single node. The fusion method that we will consider is the standard “k out of n” fusion 

rule, see [20]. This method contains as particular examples logical rules such as the AND or the OR 

functions. More specifically, the “k out of n” fusion rule decides that an object is detected if  

?� + ?� +⋯+ ?' A 2) − 9 

Where ?* is the decision of the B − CD WSN node, and its possible values are 1 if a detection is 

decided or -1 otherwise. Moreover, 9 is the number of WSN nodes, and ) is a design parameter. The 

interpretation of the “k out of n” fusion rule is that if ) or more WSN nodes decide that an object has 

been detected, then the global decision is to decide that an object is present within the monitored area.  

It is assumed that each WSN node can reach the fusion centre in one hop. Moreover, for the field 

test purposes all the WSN nodes are assumed to be plugged to the electricity grid. It is worth to 

mention that the aim of the system is to detect an intruder within the monitored area. The system can 

detect both people and objects, though the classification process is beyond its scope and it is assumed 

to be carried out in the main video surveillance system. 

 
Figure 4: Setup of the detection system based on sonar sensors. 
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Table 5: Main feaures of the sonar sensor LV-MaxSonar-ez1 MB1010. 

Electrical properties 

 
2.5V DC to 5.5V DC voltage supply with 2mA typical 
current draw. Max current consumption 3 mA.Output 
impedance 14.7 kΩ. 

Readings rate Up to 50 ms. 

Detection range From 15.24 cm up to 6.45 m.  

Sensor type Distance (sonar) 

Sensor output type Ratiometric 

Measurement Distance Resolution 25.4 mm 

Operating temperature From -40ºC to 65ºC. 

 

Table 6: Main features of the Zolertia Z1 WSN node. 

Micro Controller Unit (MCU) 16 bit ultralow power MCU based on the 2nd 

generation of the MSP430 by Texas Instruments. 

Memory 92 KB flash, 8 KB RAM 

Wireless communication 2.4 GHz IEEE 802.15.4 

RF transceiver Widely adopted CC2420 by Texas Instruments plus an 

embedded or external antenna. 

Operative System (OS) Contiki 

Analog I/O’s interfaces 2 x 3V Phidgets, 2 x 5V Phidgets  

 

3.2.3 Evaluation Strategy and Measurements 

In order to assess the proposed detection system the next assumptions are supposed to hold: 

• There is not background change in the monitored area. That is, the objects present in the 

monitored area are static to avoid unnecessary false alarms. 

• The WSN nodes are plugged to the electricity grid. 

• The WSN nodes reach the sink in one hop. 

The aim of the evaluation procedure is to assess the detection performance metrics as a function of 

the system parameters and event parameters that have a direct influence on them. Namely, the 

performance metrics are: 

• The detection rate.  

• The false alarm rate. 
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Moreover, the event parameters that have a direct influence on the metrics are: 

• The amplitude of the event. 

• The duration or length of the event (in samples provided by the sensor). 

The system parameters are: 

• The threshold of the detector method applied at each WSN node. 

• The number of WSN nodes. 

• The length (in samples) of the processing buffer at each node. This is the window where 

the detection algorithm is applied at each WSN node. 

• The total number of processing buffers. 

A twofold strategy is proposed to carry out the experiments. In the first approach, a hybrid 

experimental and simulated procedure is proposed to assess thoroughly the performance metrics. More 

specifically, the WSN will monitor the area in a real experiment and the events will be added 

artificially in each mote at a given number of processing buffers. Moreover, the number of processing 

buffers will be high enough to obtain reliable statistical values of the performance metrics. In this way, 

the amplitude and the length of the event can be controlled and we can obtain plots of the performance 

metrics as a function of them.  

The second approach, to carry out the experiments, will consider real events and the aim is to see 

whether the system obtains a performance which is within the bounds predicted by the first hybrid 

approach. 

3.3 Communication Infrastructure Simulation 

This section describes the System-Level Simulator (SLS) developed by IQU and its 

implementations related to large area surveillance application. 

3.3.1 Motivation 

Modern mobile applications have boosted the amount of video content exchanged among user 

equipment terminals (UEs), which participate in Wi-Fi based Device-to-Device (D2D) networks. 

Cooperative techniques and Network Coding (NC) are widely used for enhancing the performance of 

D2D communication and alleviate the wireless channel access issues. Bidirectional video 

transmission, with its stringent bandwidth and Quality of Service (QoS) requirements, can greatly 

benefit from such advanced techniques to improve user experience without increasing network 

congestion.  
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Digital video is a key driver of the explosion in mobile data traffic of Long Term Evolution (LTE) 

networks, due to the increased expansion of demanding multimedia applications, such as video 

streaming, online gaming, social media networking and Web TV, among others. Mobile carriers face 

complex technical challenges, as the QoS requirements of delay sensitive applications, such as video 

traffic, have to be met without inflating the capital (CAPEX) and operational (OPEX) expenditures of 

cellular networks. Concurrently, the user experience should be maintained in high levels, unaffected 

by the escalating network load [22].  

Nowadays, the LTE network performance is evaluated not only in terms of QoS, but also in terms 

of Quality of Experience (QoE), which is an upgraded indicator of the users’ satisfaction with the 

offered service[23]. Especially for the case of video-based mobile applications, the QoE can be 

assessed by various video quality metrics, such as the Mean Opinion Score (MOS) [3].  

In the last few years, various QoE evaluation models have been proposed, aiming to improve the 

user experience in video transmission scenarios over cellular networks. In [4], a video quality model 

and QoE optimization scheme have been presented, which aim to reduce the video distortion. Another 

framework for QoE inference is the MintMOS framework [5], which compares parameters of video 

streams in real time to QoE parameters already obtained by subjective quality assessment, in order to 

present realistic MOS values.  

With the aim of improving the QoE for the mobile users, the offloading of mobile traffic to D2D 

connections seems to be a viable solution to the cellular network congestion problem. The direct 

connectivity among UEs is based on Wi-Fi links that reside in the unlicensed spectrum (outband D2D) 

[6]. The content sharing among UEs can be initiated in light of two main factors: i) the desire for data 

exchange with D2D bidirectional flows, as induced by numerous multimedia applications, and ii) the 

participation in cooperative communications, when the UEs serve as relays that support other UEs’ 

communication. 

Despite its capability to enhance user experience, outband D2D communication is affected by 

inherent issues of Wi-Fi connectivity. The contention for channel access among multiple UEs has a 

severe impact on the performance of D2D links. Additionally, bad channel conditions increase the 

number of packet retransmissions. To handle these problems, several cooperative MAC protocols have 

been already proposed. A considerable number of them utilize the NC technique, aiming to further 

improve the network performance. With NC, in the D2D context, the cooperating UEs can encode and 

transmit multiple overheard packets. 

As advocated in [7], NC can be applied in cooperative MAC layer schemes, allowing the nodes to 

retransmit overheard packets of different flows. For relay-aided bidirectional communication under 

saturated conditions, the NCCARQ-MAC protocol [8] has been proposed. Nonetheless, with 

NCCARQ-MAC, the relays cooperate only if NC conditions are fulfilled. Furthermore, corrupted 

packets can be used for the retrieval of original packets exchanged between two nodes, as proposed in 

the NCAC-MAC scheme [9], in order to improve the throughput and delay performance. However, 
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this process requires strictly synchronized cooperative transmissions. Aiming to further exploit NC 

opportunities in D2D communications, the ACNC-MAC protocol [10] allows neighbouring UEs, 

which overhear packets and cooperation requests, to act as relays in bidirectional D2D transmissions.  

Taking into account the increasing popularity of video services and the benefits of outband D2D 

communication, we will apply ACNC-MAC in a bidirectional video transmission scenario. We also 

propose a new performance valuation framework, which employs the Iquadrat (IQU) System-Level 

Simulator (SLS) for a realistic simulation of the aforementioned scenario. Our SLS faithfully emulates 

all aspects of the cooperative transmission and QoE prediction techniques, assessing the effects on 

perceived video quality. 

3.3.2 Scenario Definition 

In the D2D network, depicted in Fig. 1, two UEs (u1 and u2) are involved in bidirectional video 

communication (video sharing/conferencing). Poor wireless channel conditions might lead to packet 

losses in the D2D links, thus retransmissions might be required. These are performed by N neighboring 

idle UEs that can overhear and retransmit packets, acting as relays {r1,..., ri,…, rN}. 

 

 

Figure 5: Outband D2D network topology 

The exchanged video consists of either metadata or MPEG4 video frames, i.e., I-frames (or intra 

frames) P-frames (predictive frames) and B-frames (bidirectional frames). Packets to be transmitted are 

stored in the buffers of the two UEs. It must be noted that metadata transmission greatly decreases the 

required bandwidth, but on the other hand it is expected to be much more sensitive to losses. The 

MPEG4 decoder typically operates even after multiple packet losses (albeit with significant noise and 

visible artifacts) while we assume that even a single packet loss can't be tolerated  in metadata 

transmission mode. 
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The UEs’ transmissions are managed either with the 802.11 Distributed Coordination Function 

(DCF) MAC mechanism [11], which is based on the Carrier Sense Multiple Access with Collision 

Avoidance (CSMA/CA) method, or with the ACNC-MAC protocol [10]. According to the DCF rules, 

collisions can be resolved via retransmissions that employ an exponential backoff window. In the initial 

backoff stage, the value of contention window has the minimum value. After a collision occurs, the 

contention window is doubled, until the maximum value is reached. ACNC-MAC was chosen due to its 

particularly good performance in servicing bidirectional traffic, as in case of video conferencing 

applications.  

Let us now provide a short description of the ACNC—MAC operation. Considering that u1 and u2 

establish a bidirectional flow and wish to transmit packets p and p', respectively. According to ACNC-

MAC protocol, after failing to decode packet p, u2 sends a Request-For-Cooperation (RFC) packet, 

piggy-backing its own packet p' destined for u1. Upon receiving the RFC, relays that have overheard 

and stored p in their buffer, will compete for channel access to assist in the packet retransmission. 

Part of the strength of ACNC-MAC lies in the relay backoff value selection process, to avoid 

contention among relays. For each relay the choice of the contention window is based on the number of 

packets it has overheard. The relay that gains access to the channel will transmit an "Eager-To-

Cooperate (ETC)" packet. This specifies the number of packets to be transmitted and also it indicates 

the expected number of ACK packets, so that the cooperation phase ends.  

Relays with two packets stored in their buffer (one from each flow) are assigned a lower backoff 

value to make sure they gain access to the channel. If none of the relays has received both packets, but 

some of them have overheard only one packet, then a relay with one packet will be prioritized. In case 

that all relays have failed to decode any packet, an ETC packet, transmitted by the relay that gains 

channel access, terminates the cooperation round.  

In a nutshell, three possible cases are identified: 

• A relay has correctly received both p and p' packets and is able to perform NC. The XORed 

packet p ⊕ p' is piggy-backed to the ETC packet (Fig. 2). 

• Only one of p and p' has been correctly decoded by the relay. This packet is again piggy-

backed to the ETC. 

• All relays fail to decode any packet, thus only an ETC packet ends the cooperation. 

To make a fair comparison between DCF used as baseline and ACNC-MAC, we assume that the 

joint packet loss probability at the relay and packet destination in ACNC-MAC is equal to the packet 

error rate (PER). In Fig. 1, assuming relay ri wins the contention phase and transmits its packet(s), we 

obtain:  

 
                       	1 − ��.F�=F�� = 	1 − ��.F�=	G*�		1 − ��.F�=	G*�.     
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Figure 6: ACNC-MAC operation example 

3.3.3 Evaluation Strategy and Measurements 

The IQU SLS calculates a wide range of traffic statistics, both node-level and network-level, over 

the run-time of its operation. These statistics are stored in a set of trace files at the end of each 

simulation cycle, for further analysis with statistical software or for generating plots and diagrams. 

These include common QoS metrics such as packet error rate, packet delay and saturation throughput 

for given channel conditions. These metrics can be employed to evaluate the video metadata 

transmission, e.g. calculating the maximum number of supported video streams and the achievable 

throughput to guarantee certain QoS parameters. 

Additionally, a new performance evaluation framework for the ACNC-MAC protocol is proposed, 

based on the IQU System-Level simulator (SLS) platform along with a Quality of Experience (QoE) 

prediction model. Our goal is to measure the effect of ACNC-MAC on enhancing user experience, 

quantified with the Mean Opinion Score (MOS) metric. 

3.3.3.1 IQU System Level Simulator 

The System Level Simulator (SLS) is a simulation platform for wireless networks. Its focus is in 

simulating Layer-2 protocols, but it also implements physical layer functionalities, i.e., simulating the 

underlying wireless channel and the propagation of wireless signals. The SLS is a flexible software 

tool, which allows rapid prototyping and validation of algorithms and scenarios. One of the key 

strengths of the SLS is the availability of a Graphical User Interface (GUI) which increases the 

efficiency of the simulation process. It also visualizes the operation of the network in real time. The 

SLS has been developed in the C++ programming language, using Microsoft .NET Framework. 

The ACNC-MAC protocol was implemented as a new module which was added to the SLS, to 

evaluate its performance in a close-to-realistic environment. Protocol implementations at the SLS are in 
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the form of Finite State Machines (FSMs). The SLS node model was also accordingly modified to 

support multicasting of XORed packets, which is required by ACNC-MAC protocol. 

In Figure 3, the main SLS screen is depicted, with two UEs exchanging video traffic and two relays 

assisting in the transmission. A color code is employed, representing the operating state of the mobile 

stations (e.g., green is for transmitting and blue for receiving stations). During run-time, the GUI 

interoperates with the SLS engine which implements the networking protocols and the components 

which are responsible for generating traffic, calculating traffic statistics, and writing trace files. The 

simulation is controlled by a set of buttons (Play, Pause, Step, Stop). The SLS allows the pause of the 

simulation at any moment to inspect the variables and operation state, and then continue the simulation 

or advance the time step-by-step. This is helpful for validating the correct operation of networking 

protocols, facilitating protocol development. 

It must be noted that time representation at the SLS is measured in time-step intervals (or slots), of 

10 µs. The main simulation loop advances time by one time interval per simulation step. The SLS 

modules all have a common time representation and in each simulation step all modules interact with 

each other to implement the network operations. 

 

 
Figure 7: SLS Main screen 

3.3.3.2 Measurement Metrics 

Traditional QoS metrics, such as delay and packet loss ratio, are already supported by the SLS and as 

previously mentioned can be employed to evaluate the metadata video transmission. For example, we 

can calculate the maximum number of supported video streams for given channel conditions and 

calculate the maximum throughput to guarantee a given packet delay or a given packet error rate 

probability. However, QoS parameters are not accurate predictors of user experience when video traffic 

(i.e., MPEG 4 frames) are transmitted. Thus, to assess the efficiency of MAC protocols in perceived 

video quality without resorting to costly field tests, several QoE prediction models have been proposed 
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in the literature. In our performance evaluation framework, we employ the QoE prediction model 

described in [12], which takes into account the effect of packet losses in different frame types. The 

authors employ a database of videos for a range of different packet error rates, and employ Video 

Quality Model (VQM) to assess their quality. This process has a very good correlation with the MOS 

score, which evaluates the perceptual video quality as experienced by experts. However, VQM 

assessment it is still too resource intensive to be employed in a real-time network simulation. The 

output of the author's analysis is a linear model that predicts the MOS score from Ιloss, Bloss and Ploss, 

namely, the frame loss ratios of I-frames, B-frames and P-frames, respectively: 

MOS = 4.9 − 1.08 · IOPQQ − 3.28 · BOPQQ − 3.23 · POPQQ                                       

In the abovementioned model, the authors assume that a single packet loss at an I-frame is recoverable 

(as long as it is not at the frame header) and P-frame losses have a bigger impact on video quality than 

B-frame losses. 

 To implement the aforementioned QoE prediction model at the SLS, we added support for the 

MPEG4 Group of Pictures (GOP) pattern, which specifies the order of frame types. The GOP starts 

with an I-frame followed by two B-frames (denoted as an "IBB" pattern) and then by a pattern of 

multiple "PBB" patterns, as depicted in Fig. 4. The number of frames in a GOP is referred to as the 

GOP length. The three different frame types in the GOP support a different compression ratio: 

 

• I-frames are frames that can be independently decoded, and have the lowest compression 

ratio. An average 7:1 compression ratio is assumed. 

• B-frames have the highest compression ratio, by referencing past and future frames. An 

average 50:1 compression ratio is assumed. 

• P-frames stand in between I-frames and B-frames, with an average compression ratio of 20:1. 

 

 
Figure 8: MPEG4 video GOP structure 



Consortium Confidential COPCAMS Cognitive & Perceptive Cameras 

ARTEMIS-JU – GA n°332913 2016-01-07 14:13 27  

To simulate the abovementioned GOP structure at the SLS we mark transmitted packets 

accordingly. The GOP structure starts with an "IBB" pattern, with the I-frame taking up 14 packets and 

each B-frame 2 packets. Then the "PBB" pattern is repeated 8 times, with P-frames taking-up 5 packets 

and each B-frame again 2 packets. It can be seen that the relative sizes of the frame types reflect their 

average compression ratio. 

3.3.4 Results 

We have programmed the QoE prediction for video transmission in the IQU SLS and we will 

provide the results soon. 

3.4 Cognitive and Perceptive Cameras Systems for Smart Facility 

Management Domain 

3.4.1 Motivation 

Facilities management is gaining increasing recognition as a significant contributor to the overall 

effectiveness of many organisations. Smart Facility and Building Management (SF&BM) generally 

involves a number of disciplines and services. The most general description to identify the market 

segment is understanding Smart F&BM as integrated management process that considers people, 

process and place in organisational context, being focused in the design and improvement of 

intelligent buildings (IB) and the coordination and optimization of several domains: facilities, life 

security, physical security and information technology. In this context, companies are becoming more 

interested in exploring opportunities to consolidate multiple services from single suppliers as a way of 

improving value. There is a significant consolidation opportunity for service providers able to deliver 

an integrated solution. 

With buildings responsible for about half of all energy consumption and greenhouse gas 

emissions, establishing, managing, optimizing, and maintaining sustainability objectives is becoming a 

core driver. Also, forward-looking companies and public entities are adopting a new approach, where 

not only a coordinated work and integrated I&FM service is being required, but also providing new 

smart services that can take corrective actions automatically. 

Smart Buildings – Automatic Corrective Actions 

.One of the key trends is to provide solutions that can take remedial actions automatically, 

providing a coordinated response in the “foundational systems” such as security, electrical distribution 

or HVAC (heating, ventilation, and air conditioning).  
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Smart Video Applications 

While the video surveillance system is a mainstay of building security, it may serve many 

purposes. The analysis of digital images addresses aspects of physical security but may go way beyond 

that to provide data and information for building life safety, energy management and overall building 

performance.  

However, though during last years a wide range of new applications within computer vision have 

been enabled, the network bandwidth, server processing and cost have been inhibitors for these 

opportunities up until now. Additionally, the traditional vision of a vertically structured market 

prevented the adaptation to a growing demand of dynamism and flexibility in the context of Smart 

Facility Management. The market is demanding not only more efficient, flexible and autonomous 

surveillance systems, but the integration of video systems to provide more data and information for 

energy management and enhanced building performance. 

In this context, the Cognitive & Perceptive Video Systems (CPVS) enabled by COPCAMS would 

represent a significant step towards wider adoption of embedded vision systems within the smart 

facilities & smart building management domain.  This new approach would provide advanced features 

in an emerging market, where and improved performance and reduced energy consumption will 

facilitate the use of embedded cameras not only as simple sensors, but as a distributed cognitive 

system, going beyond smart surveillance.  

The motivation in this use case is to test and iteratively improve the approach (together with the 

use case in T5.3), in order to identify a minimum viable service (MVS) that can be provided to 

different clients as a comprehensive solution within the Smart Facilities and Smart Buildings 

Management domain.  

The motivation for this use case is based on the potential use of a CPVS to provide different 

functions/profiles depending of different situations. That is, to explore the potential of COPCAMS 

approach, -with embedded and powerful vision systems- to sense the surrounding environment, and 

react to changes. In this case, the field test aims to explore the possibility of a COPCAMS system that 

is initially working in “asset recognition mode” to change to “surveillance mode” to detect intrusions 

in the specific zone. This can be used in different environments, as public or industrial facilities to 

control different assets (trolleys in airports, containers in maritime cargo terminals, special vehicles in 

public/private facilities e.g.) 
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Figure 9: Cargo Terminals Sample 

3.4.2 Scenario Definition 

The field test scenario is initially simulated in CCTL facilities, and the setup of the system is as 

follows: A COPCAMS platform (initially a PC+GPGPU, but extensible to STHORM platform) with a 

single camera will be placed to monitor a working area, where specific assets must be identified. 

These assets will be identified thanks to a specific image pattern, and will remain stopped during a 

timeframe of 2-4 seconds, simulating a routine control.  

 

Figure 10: Sample Vehicle with Specific Pattern 

On a particular moment (triggered by the end of working time or by a specific simulated alarm 

that will be captured by the system), the system will be required to change to surveillance mode, and 

detect human intrusions in that specific zone.  The results will be registered, in order to be sent to a 

main station, that could feed a business intelligence unit, a dashboard or a decision making system.  
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Figure 11: Sample Vehicle with Specific Pattern 

3.4.3 Evaluation Strategy and Measurements 

The described scenario will take place in a controlled area, with stable illumination. We assume 

that the system is correctly installed to cover the monitoring area and the cameras are calibrated. 

Under these conditions, the following metrics will be measured for the performance evaluation.  

• Detection Rate: For both modes, the detection rate will be measured.  

• False Alarm Rate: For both modes, the false alarm rate will be measured. 

The evaluation strategy will follow an iterative process, where the algorithms, and the overall 

COPCAMS performance will be analyzed in different target platforms. 

3.5 Face Detection System 

This section describe the Face Detection System developed by CEA using their HOE2 

methodology. 

3.5.1 Motivation 

CPVS development teams have to cope with usual constraints of industrial organizations 

developing embedded systems, including: (1) End-to-End Engineering: the full development cycle 

goes from requirement formalization to the final integration and assessment of the application on its 

platform. (2) Incremental & collaborative development: To organize efficiently the work of large 

teams, it is critical to regularly distribute and integrate work, and to measure progress towards the 

objectives. 
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The motivation of this lab. experiment is to measure the benefits of a well-organized development 

method and assess its benefits, especially for reuse e.g. when a given applications has to be specialized 

when for several platforms.  

3.5.2 Scenario Definition 

The CEA scenario will be to develop a Face Detection System (FDS) using the 〈HOE〉2 method 

[24-27]. The FDS will be made of an application running on a platform. The development of each of 

those two systems will be initiated separately from their own use cases, presented Table 7 and Table 8 

respectively. The platform’s use cases will be implemented on two different hardware platforms: One 

made of a Raspberry and an Arduino, the other made of an i.MX6 board. 

Table 7: Use Cases of the Face Detection System's Application 

ID Causality Name 
Description 

1 Primary Detect presence 
The actor wants to know when somebody enter the monitored zone. 
2 Primary Track faces 

The actor wants to track faces of people entering the monitored zone. 
3 Secondary Toggle camera control 

The actor wants to switch between manual and automatic tracking modes. 
4 Secondary Query camera control mode 

The actor wants to know the current tracking mode. 
5 Secondary Orientate camera 

The actor set the camera’s orientation. 
6 Secondary Query camera orientation 

The actor wants to know the camera’s current orientation. 
 

Table 8: Use Cases of the Face Detection System's Platform 

ID Causality Name 
Description 

1 Primary Install firmware 
The actor installs the new firmware on the platform. 
2 Primary Execute the application 

The actor executes the application. 
3 Secondary Query date and time 

The actor wants to know the current date and time on the platform. 
4 Secondary Set date and time 

The actor sets the date and time on the platform. 
5 Secondary Query firmware version 

The actor wants to know the current version of the firmware. 
  

 

3.5.3 Evaluation Strategy and Measurements 
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The goal of this experiment is to assess the gains in (1) code reuse, (2) tool reuse and (3) dev 

elopement time while developing an application for several platforms. We will compare the amount of 

hand written code against generated code and the reuse of code generation tools across the two 

platforms. We will also measure the time spent on modeling and developing the application and the 

two platforms. 

4 Demonstrator Architecture and Methodology 

The field test scenario described in Section 2.1 will be configured as a distributed heterogeneous 

sensor architecture as illustrated in Figure 12. In this configuration, each fixed wide FOV camera will 

be used as a “weak observer” whose task is to continuously monitor the scene of interest with low 

computational resources, seeking salient event/target traces. The PTZ camera will be used as an 

“expert observer” with much higher computational resources. When an interesting event/target is 

detected by a weak observer, the “weak observer” passes the corresponding information (pixel 

locations and extracted features of the detected event/target) to the expert observer. Then the “expert 

observer” looks into the detected event/target and provides the final decision. This approach is to be 

realized by ASELSAN’s proposed smart surveillance architecture.  

In this architecture, the use of a high quality PTZ camera enables the system to gather richer sets 

of information, i.e., spatial and temporal features, which cannot be obtained by a fixed FOV camera 

only system. For instance, extracting histogram of gradient features (HOG) using low resolution 

images typically results in noisy features due to noisy gradients, and in turn degrades overall system 

performance. This issue can be rectified by zooming capability of a high quality PTZ camera. 

Furthermore, the use of a PTZ camera facilitates the manual visual inspection of a detected 

event/target, which is significantly critical in eliminating highly undesired false alarms/ misdetections, 

as well as providing information on corner cases that can be corrected by improving the system 

accordingly.  

The proposed cluster based smart surveillance system can provide wide area coverage with the 

advantages described above at a low overall cost. This is due to the use of multiple cheap, wide and 

fixed FOV cameras providing full coverage of a wide area at all times; and the use of a single PTZ 

camera providing higher quality coverage of a smaller portion that is of interest if/when necessary. 

The fixed FOV cameras transmit metadata or encoded video frames only when salient event/target 

detection occurs, reducing data transmission and power consumption. 
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Figure 12: Distributed heterogeneous sensor architecture 

The detailed hardware and software architectures for “weak observer” and “expert observer” as 

well as the methodology for using these architectures in the distributed surveillance application are 

given in the following sections. 

4.1 Weak Observer Architecture 

Each weak observer composed of fixed wide FOV camera and a local processing unit with low 

computational resources. The main task of weak observer is to continuously monitor the scene of 

interest and seeking salient event/target traces. The local processing unit on weak observer composed 

of 

1. Intel Core i7-4860EQ CPU  

2. Intel Iris Pro 5200 Embedded (same die) GPU 

3. AMD E6760 Embedded (PCIe) GPU 

4. 4GB DRAM 

5. 256 GB SSD HD  

In the configuration of weak observers, the video frames will be captured via Ethernet port and the 

captured frames will be feed to the processing unit.  

The software components that will be run on the processing unit are listed below. 

A Motion Detection: The motion in the scene of interest is detected and registered at each pixel 

location in the imaging plane, if it is significant, i.e., above a certain threshold. 

B Block Processing: The motion detected in step A is processed and grouped into rectangular 

and overlapping blocks of pixels in the imaging plane. Then, blocks with significant amount motion 

are detected and registered. 
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C  Feature Extraction: A certain (pre-defined) set of visual features are extracted from each 

detected block. 

D Decision: The extracted features for each detected block are processed and a decision is made: 

i) The activity in the corresponding block is immediately labeled as human/car/other; or ii) There is 

not enough evidence and the extracted features along with the pixel coordinates are propagated to the 

central station for a detailed analysis. 

1. Motion Estimation: In this algorithmic block, the pixel locations where some predefined 

motions are detected and the bounding box locations will be produced as output.  

2. Object Selection: The object corresponding to the biggest/most accurate/… will be selected 

among all the detected objects in order to report single object to the main station. 

3. Classification: Features for the detected objects will be produced. 

When any moving object is detected, the weak observer will send the pixel locations of the upper 

left and lower right corners of the bounding box and the extracted features for the detected object 

to the main station through Ethernet.  

4.2 Expert Observer Architecture 

The expert observer composed of narrow FOV PTZ camera and a local processing unit with high 

computational resources. The main task of expert observer is to merge the information received from 

multiple weak observers and decide final decisions about the detected objects. The processing unit on 

expert observer composed of 

1. Intel Core i7-4470 CPU 

2. NVIDIA GTX780 or GTX 980 or Quadro K6000 or Quadro M6000 GPU(s) 

3. 16 GB DRAM 

4. 256 GB SSD HD 

In the configuration of expert observer, the video frames will be captured via Ethernet port and the 

captured frames will be feed to the processing unit.  

The software components that will be run on the processing unit are listed below. 

A. Object Localization: The 3D coordinate of the detected object will be estimated from the pixel 

locations of the detected object received from at least two weak observers. 

B. PTZ Steering: The PTZ camera will be steered to the detected object coordinate by converting 

the 3D coordinate to the azimuth and elevation rotation angles of PTZ camera. 
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C. Multi-view Classification: Features for the detected objects will be produced from the video 

frames captured from PTZ camera. Then, these features and the features received from weak 

observers will be merged and classification result will be produced. 

D. Superresolution: From multiple frames captured from the PTZ camera, the super resolved 

video frames will be monitored. 

 

1. Object Localization: The 3D coordinate of the detected object will be estimated from the pixel 

locations of the detected object received from at least two weak observers. 

2. PTZ Steering: The PTZ camera will be steered to the detected object coordinate by converting 

the 3D coordinate to the azimuth and elevation rotation angles of PTZ camera. 

3. Multi-view Classification: Features for the detected objects will be produced from the video 

frames captured from PTZ camera. Then, these features and the features received from weak 

observers will be merged and classification result will be produced. 

4. Superresolution: From multiple frames captured from the PTZ camera, the super resolved 

video frames will be monitored. 

4.3 Methodology 

The performance of the distributed heterogeneous sensor architecture to be tested in demonstration 

will be measured based on the following methodologies. The performance metric measurements will 

be handled in two categories, i.e., system functional accuracy and system resources.  

4.3.1 System Functional Accuracy 

4.3.1.1 Classification 

To measure the classification accuracy, video frames will be captured from the monitored area and 

stored to be used in training and testing the classification algorithm. Based on the demonstration 

scenario, there will be only one moving object in the scene at any time. These objects can be a walking 

person or moving car with a speed less than 40 km/h or moving vehicle other than a car such as 

motorcycle, pickup truck, etc. Throughout the training phase of the classification algorithm, the video 

frames can contain only a walking person or a moving car. Therefore, any moving object other than a 

“walking person” or “moving car” will be defined as “other” in the classification. To measure the 

accuracy of the classification algorithm, we first manually label each frame as “human”, “vehicle”, 

“other” and “normal” and then the following evaluation metrics will be calculated by comparing the 

results of the classification algorithm with the labeled video frames. 

• Detection Rate: The empirical probability of that a truly “other” object is labeled as 

“other”. 
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• False Alarm Rate: The empirical probability of that a truly “normal” object is labeled as 

“other”. 

• Classification Accuracy: This is calculated for only “normal” objects. The empirical 

probability of that a truly “human activity” is labeled as “human activity”. This is the 

classification accuracy for “human activity”; and it is defined similarly for the vehicles. 

 

• Detection Rate: Give the textual and mathematical definition 

• False Alarm Rate: Give the textual and mathematical definition 

• Classification Accuracy: Give the textual and mathematical definition 

4.3.1.2 Superresolution 

In order to measure the superresolution accuracy, the user experienced quality measurement will 

be used. Both the original and superresolved images will be shown to the users and the users will be 

asked to give a quality number between 0 and 5 (0 is the worst and 5 is the best quality) based on the 

following three criteria [22], 

1. Fidelity Preserving: Does the superresolved image has the same general appearance as the 

original image (0: Completely different, 5: The same) 

2. Detail Enhancing: Does the superresolved image has sharp features where they are expected 

(0: Worst result, 5: Best result) 

3. Smoothness: Does the superresolved image has continuity where it is expected and avoid 

unnatural high-frequency artifacts (0: Wors result, 5: Best result) 

Each of the above criteria will be measured over several images by different users and will be 

averaged to determine the quality metric. 

4.3.2 System Resources 

4.3.2.1 Total Transmission Bandwidth 

In order to measure the bandwidth resources, we will use a network analyzer tool such as 

Wireshark and count the number of bits received at the main station within a unit time or triggering 

event. For the same scenario, the measurement will be performed for both the distributed 

heterogeneous sensor architecture and centralized architecture. In the former, weak observers will send 

only the pixel locations of the detected object and a feature vector corresponding to the detected 

object. On the other hand, in the centralized architecture, video frames will be sent to the main station 

continuously. The transmission bandwidth comparison between centralized and distributed 

architectures will be used as a quality metric measurement for distributed architecture. 
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5 Validation 

5.1 State of The Art at Project Start 

As of 2015, the dominant approach for large area surveillance applications is the IP camera based 

centralized architecture. IP camera based video surveillance has been gaining popularity over the 

traditional analog systems since early 2000s. A centralized architecture uses a master database located 

on a central control server. All configuration information, related to the cameras and NVRs/DVRs that 

constitute the installation, as well as all content is transmitted to the master database; for subsequent 

access and analysis [23]. The main drawbacks in this architecture can be listed as [23].Erreur ! 

Source du renvoi introuvable. 

• Continuous communication of users with the central office requires expensive 

infrastructure of high-end switches and also uses up precious bandwidth 

• In case of WAN failure, remote users are left stranded with no access to the live and 

recorded video from cameras which may actually be on the local network 

• All users of the system rely on the central database for login and license permission 

checks. If this database fails, the entire system fails. 

• As and when more cameras and users at remote locations are added to the network, 

bandwidth becomes congested. 

• The network and servers need to cope with increased levels of traffic – database changes, 

user authentications, storage and transmission of recordings. 

• Surveillance cameras do not respect demanding requirements placed on privacy issues 

specially for a system in public places 

Recently, decentralized IP cameras have been introduced to the security and surveillance market. 

These decentralized cameras have on board processing power and storage to perform low complexity 

processing tasks such as image enhancement and motion/activity detection. However, the amount 

processing power available on board is limited and the resulting architecture is not truly distributed as 

independent cameras do not collaborate to perform a common security/surveillance task. Typically, 

the processing done on the end node decentralized IP cameras are not utilized at the center or at 

another end node camera. 

This situation also applies to other domains, like smart facility and building management, where 

additionally, the traditional vision of a vertically structured market prevented the adaptation to a 

growing demand of dynamism and flexibility in the context of Smart Facility Management. As 

explained above, the market is demanding not only more efficient, flexible and autonomous 

surveillance systems, but also the integration of video systems to provide more data and information 
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for energy management and enhanced building performance. The Cognitive & Perceptive Video 

Systems (CPVS) enabled by COPCAMS will represent in this context a significant step towards wider 

adoption of embedded vision systems within the smart facilities & smart building management 

domain; providing advanced features in an emerging market. 

QMUL began the implementation of a full pipeline for multi-target detection and tracking based 

on PHD-PF from a MATLAB prototype developed in house. Target detection is carried out using 

Histogram of Oriented Gradient approach [16]. The MATLAB implementation of PHD-PF has the 

drawback of having large latency, especially if aimed at running on an embedded platform, such as 

NVIDIA Jetson TK1. Therefore QMUL developed a C++ version of PHD-PF that will allow its 

parallelization at a lower programming level than MATLAB. 

5.2 Targets at Project End 

COPCAMS project will attempt to resolve the drawbacks of centralized surveillance architecture 

by proposing and designing heterogeneous distributed surveillance architecture. Unlike the centralized 

architecture, in a distributed architecture the data is spread across the system, generally close to where 

it is produced or needed.  

In COPCAMS architecture, the cameras distributed over the monitored area have local processing 

units and analyze the video frames to decide whether there is an activity on the scene or not. The 

activity can be defined based on the video surveillance task, such as detecting a specified object. If no 

activity is detected on the scene, it is not need to send any information to the main station. Hence, we 

can eliminate the unnecessary data transmission.  

Our main target is to improve the current (state-of-the-art) centralized surveillance architecture in 

the following points: 

• Bandwidth: In the distributed surveillance architecture, the cameras in the weak observer 

will not send live video frames to the main station. Instead, they will analyze the video 

frames in the local processing unit to detect an activity that can be defined based on the 

mission. Then, if any defined activity is detected, they further analyzing the activity and 

extract the features that describe the activity. After performing the processing, the pixel 

locations and features of the detected object will be sent to the main station. In this 

structure, network bandwidth is not used for continuous communication with remote 

locations. Data is streamed to the central station only in event of an operational incident. 

Hence, overall communication cost is expected to decrease. 

• Distributed Computing: As opposed to the centralized surveillance architecture, since 

the weak observers have local processing unit there is no need to analyze the whole video 



Consortium Confidential COPCAMS Cognitive & Perceptive Cameras 

ARTEMIS-JU – GA n°332913 2016-01-07 14:13 39  

frames on the central station. Some of the tasks or some part of the whole task can be 

performed on the node outside of the central station. This approach decreases the 

computational complexity requirement in central station. Hence, the central station in 

distributed architecture can be cost effective or can perform much complex tasks as 

compared to the centralized architecture. 

• Scalability: With distributed architecture, additional cameras and users can be added to a 

sub-location to increase the coverage area with minimal increase to network traffic and 

computational capacity of the central station. 

• Security and Privacy: we will improve support for privacy protection by implement 

algorithms of anonymization and encryption scheme, for videosurveillance vision 

systems. 

6 Current State of the Demonstrator 

The current status about the Large Area Surveillance Application Demonstration can be 

summarized as follows. 

• Camera Installation: Two Samsung SNP-3120VH IP cameras were installed on the 

outside of the building in ASELSAN’s facility. One of these cameras will be used as fixed 

wide FOV camera in weak observer and the other one will be used as narrow FOV PTZ 

camera in expert observer. In this configuration, the target object location will be 

estimated from the pixel locations of a single camera with the assumption that target 

object is on the floor. Then, we will try to install the third camera before the final demo 

and use two fixed cameras to estimate target object without any assumption about the 

target location. 

• Network:  Two Samsung SNP-3120VH IP cameras are connected to the ASELSAN’s 

local network and video capture and steering functionalities were successfully tested. 

• Processing Units: There will be two different types of processing units to be used in weak 

observer(s) and central station. The processing unit in weak observer will be configured 

with low computing power (Intel Core i7-4860EQ, Intel HD 5200 GPU same die GPU 

and possibly an embedded grade GPU) and the one in expert observer will be configured 

with high computing power (Intel Core i7-4770 with multiple high end GPUs)  

• Algorithms:  Single camera classification algorithm design in MATLAB has been 

completed and we are working on algorithm porting to OpenCV. Activity detection and 

anonymization algorithm are currently ported on COPCAMS platforms (iMX6) to ensure 

privacy protection. 
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• Data Collection: We have just started to collect the video frames for classification 

algorithm training. We capture a video from the scene of interest. Since this video is going 

to be used for training and testing purposes, it should contain all kind of activities 

regarding “human”, “vehicle” and “other” activities. We split this video into two 

segments. In the first segment, it contains only the normal, i.e., non-other, activities such 

that the classification algorithms are trained by using this segment. In the second segment, 

there are also the “other” activities in addition to the normal ones. By using this segment, 

the classification algorithms are tested for cross-validation and performance evaluation.  

QMUL is currently working towards the parallelization of PHD-PF and the computational 

performance achieved so far is reported in Figure 11. The parallelization is done for GPGPU on 

NVIDIA Jetson TK1. This performance improvement is obtained via parallelization of a clustering 

step (Expectation-Maximization – E-M) within PHD-PF. The clustering step is used by the PHD-PF to 

estimate the final state of the targets. The E-M was originally developed with OpenCV, whereas the 

parallelized version is developed in CUDA. Figure 12 shows the power consumption in the case of 

CPU version of the code and GPU version of the code. The power consumption is slightly higher for 

the GPGPU version but still comparable to that of the CPU version. QMUL is continuing with the 

optimization of the algorithm via the use of OpenMP and GPGPU functions provided in OpenCV, and 

the goal is to achieve 

tracking 

performance of 15 fps. 

 

 

  

Figure 13 : GPU vs. CPU performance of NVIDIA Jetson TK1 in the case of 

PHD-PF tracking algorithm. The horizontal axis represents the variation of the 

particles per target. The vertical axis represents the average execution time in 

milliseconds (ms). 
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Figure 14: GPU vs. CPU power consumption on NVIDIA Jetson TK1 in the case of PHD-PF tracking algorithm. 

The horizontal axis represents the variation of the particles per target. The vertical axis represents the average power 

consumption (mA). 

 

7 Conclusion 

The specifications of the demonstration activities for the large area surveillance applications are 

described in two categories, i.e., a field test and laboratory experiments. The system architecture 

including the hardware and software configurations and the methodology for evaluating field test are 

explained. The state of the art at project start and the expected progress with COPCAMS project are 

explained. The metrics and measurement strategy of COPCAMS solutions on large area surveillance 

applications are described. The results explored by evaluating the field test will be reported on "Large 

Area Surveillance Applications Report" at the end of the COPCAMS project. 
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