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1 Introduction

Vision systems are present in the manufacturingjagins for at least two decades. First machine
vision systems were, with respect to the currepliegtions, quite simple, offering limited functiality.
Gradually, with increasing computational power, hmae vision systems became more complex.
Today's machine vision systems in manufacturingirenments mostly consist of fixed function,

configurable cameras that stream video to PC-bg@s®tlin some cases small embedded) gateways.

The Cognitive and Perceptive Camera Systems (COP&ANoject explores a new approach to
the machine vision system in manufacturing appbeat In contrast to the “camera-PC” approach,
COPCAMS project will use many-core programmableebmator platforms to capture and process
images and other signals and extract the relewdmation. Since the processing will be done ligcal
on the embedded platform, only extracted infornmatidgll be transmitted over the network. This will
reduce the amount of the information sent over rieevork and enable implementing distributed

machine vision applications.

The role ofD5.2 Advanced Manufacturing Applications Specifamatdocument is to demonstrate
the tools and methodologies developed during thBCAMS project and to specify the demonstration
activities (field tests and prototype demonstrat)jan advanced manufacturing applications. Indigidu
field tests described in this document will be eatéd based on the success criteria defined in the
documentD1.4 — Summary of Use Cases and Field Test Deimifiools developed in WP2 and
described in D2.4 will be used during the developtmienplementation and optimization of the demo
applications. The algorithms described in WP3 (p3a8ll be implemented to demonstrate the tasks
presented in this document. T5.2 has strong commeglso with the WP4, where the middleware of the
platforms used in advanced manufacturing demo serdeed. Initially the STHORM platform was
intended to be used for all demonstrations in tbealced Manufacturing Applications. However, due

to the delay in the availability of this platforremonstrators decided to use also alternative prago

The document is further organized as follows. Tamanstration task from the field of the quality
control, object positioning, augmented reality aoldot tracking are described in Section 2. Sec3ion
describes the proposed system architecture andodwtigy used in the design and evaluation of the
field tests and demonstrations. The results optbminary experiments, performed in the laboragr
are presented in Section 4. In Section 5, the éenof the COPCAMS solutions in advanced
manufacturing applications is presented, by compgastate of the art at the project start and the
expected progress during the project. Section Gsanaes the current state of the demonstrators and

their tasks. Finally, Section 7 concludes thiswdghble.
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2 Demonstrator tasks

This section describes the field testé&\ovanced Manufacturing Applicatignshich are defined in
D1.4 — Summary of Use Cases and Field Test Deimdiocument. The objective okdvanced
Manufacturing Applicationsfield tests is to show how the technologies dgwetb during the
COPCAMS project can improve the manufacturing pseand implement solutions which are beyond

the state of the art.
The demonstrator tasks Advanced Manufacturing Applicatioase divided into four areas:

* Quality control tasks,

* Obiject positioning task,

* Augmented Reality (AR) task,
* Robot tracking task.

The demo iMdvanced Manufacturing Applicatioméll include four field tests and two prototype
use cases. The field tests (quality control taskaject positioning task) will be performed inealr
world manufacturing process at the KTOR producfamilities. The AR task and robot tracking task

will be demonstrated as an application prototype.

2.1 Quality control tasks (KTOR, JSI)

The aim of the quality control tasks is to devedom implement advanced machine-vision based
quality control systems. Selected use cases willai® COPCAMS solution on the commutator
production line at various stages of the producpioztess and will partially substitute manual gyali
control. All three use cases are from the fieldh&f product quality control and share same use-case

diagram. The use-case diagram of the quality cotasis is shown in Figure 1.

COPCAMS:
Advanced Manufacturing Application

Quiality inspection and
verification of semiproducts

Wy

Production line  Camera Semiproducts

Figure 1: Quality control tasks use-case diagram
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Each quality control task will include the follovgractors:
* Production line
* Camera/ COPCAMS platform

e Semiproducts

2.1.1 Dimensional measurements of the copper base in graphite

commutator production

Graphite commutator (Figure 2) is assembled frao@per base and a graphite body. In the initial
production phase, the copper base is produced droopper strip in the process of cold forming. The
copper base has a relatively complex shape and naesances have to be checked before the
subsequent phases of commutator production. Tlaiption cycle of the copper base is about 1 second
per piece. The objective of the demo is to implent#mensional quality control of the copper base,

based on predefined tolerances within the curresdyztion cycle.

copper bas

graphite body
Figure 2: Graphite commutator

The copper base image captured with backlight ithation and marked dimensions, which have to
be checked, is shown in Figure 3. Since the copase contains eight symmetrically shaped anchors,
every dimension has to be checked multiple timesclearer representation, in Figure 3 each dinoensi

is marked only once. The description of the dimemsiwith tolerances is listed in Table 1.

ai

Figure 3: Captured image of the copper base with marketalridimensions
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Table 1: Critical dimensions with specified tolerances

Dimension Tolerances Description

(label in Figure 3)

q 9.5+0.25 mm distance between two
1
max. difference between segment pairs < 0.3 mopposite anchors
angle between two
o1 45° + 1° _
adjacent anchors
area without the copper
a acceptable / unacceptable

inclusions

The first dimension which has to be measured isdtstance between the two opposite anchors.
This dimension is crucial, since inadequate din@nsesults in improper alignment of the copper base
with the graphite body. This can lead to a meclariault of the commutator. The copper base for the
considered type of commutator consists of eighttidal anchors. As shown in Figure 3 this dimension
IS measured between the two opposite anchors. 8éselabsolute value of the dimension, also the

maximal difference between the anchor pairs is naoo.

The next dimension, which has to be checked, istiyge between the adjacent anchors. Like the
distance between the two opposite anchors, the doeglveen the anchors affects the alignment of the
copper base with the graphite body, and consequénd mechanical strength of the produced

commutator.

The last measurement that has to be verified igpthsence of the copper inclusions in the area
between the two adjacent anchors on the copper bhsecopper base is produced in a process of cold
forming. Since the copper base has a complex shapemoved copper may remain on the copper base.

As a result, two adjacent anchors on the produoathwtator can be short-circuited.
Performance of this use-case will be evaluateddasehe following success criteria:

e accuracy of measurements/detections,
» software development and deployment cost,

e power consumption compared to currently used P@easchine vision system.
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2.1.2 Quality inspection of copper-graphite soldering

One of the phases of graphite commutator produdsosoldering of metalized graphite body
(Figure 4), representing the brush track to thepeoppase. The process of soldering is one of the mo
critical processes in commutator production, sitiee reliability of the end user application dirgctl
depends on the strength of the copper-graphite. jlsirthe commutator production at KTOR, there is
currently no automated quality control of the salug process and all the commutators are inspected

manually.

Figure 4: Graphite disc

To overcome the drawbacks of the manual inspeatieraim to design an automated quality control
procedure for graphite commutator soldering prac&sddering process in commutator production
consists of several phases. First, the right gtyaoitithe soldering paste has to be applied tsgeeific
area of the metalized graphite disc. Next, the ljtapdisc and the copper base are appropriately
positioned and oriented, and then joined togethfter both components have been joined, they are
heated and a soldered joint is formed. Finally,stmiproduct is released to the next productiors@ha

on the commutator production line. The procesolufesing takes about 5 seconds per piece.
During the soldering phase, four types of defecy ptcur:

metallization defect, i.e., there are visible defem the metallization layer of the graphite body,
excess of solder, i.e., solder is split over thepeo base,
deficit of solder, i.e., graphite body and the capipase are not properly soldered together,

A w DN PRF

disorientation, i.e., the copper part is not appedely oriented with respect to the graphite part.

Each type of defect can occur only on a specifit phthe commutator. Consequently, different

types of defects can be identified on differentnsegts of the commutator.

Defects, which occur during the soldering proceasnot be directly measured. Therefore, a domain
expert has to manually classify a particular conatartinto the appropriate quality class, i.e., methe

type of defect.

Performance of this use-case will be evaluateddasehe following success criteria:
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» accuracy, confusion matrix of the deployed algonith
» software development and deployment cost,

* power consumption compared to currently used P@easachine vision system.

2.1.3 Measurement of the commutator mounting holes roughness

Dimension and roughness of the mounting hole aedfvthe most critical characteristics of a
commutator. When the commutator is mounted on ectrédal motor shaft, a predefined force has to
be achieved. This force depends on both charatitsris dimension and roughness of the mounting
hole. In the demo, we will address the problem e&suring the roughness of the mounting hole (Figure
5) using machine vision. Usually, for roughness sneaments, contact methods are used, but these
methods tend to be very sensitive and are notideitar on-line roughness measurement in production
On the market, there are also non-contact methodsofighness measurements available, such as
scanning electron microscopy (SEM) and atomic fonaroscopy (AFM). These methods can provide
very accurate measurements, but since they requégaration of the testing samples and are very
sensitive to vibrations, they are not suitabledo+line roughness measurements. The objectiveeof th
demo is to develop and implement a machine viseset method for on-line, noncontact roughness
measurement. Processing time of the commutator timguinole is about 3 seconds per piece (including

mechanical manipulation).

mounting hole

Figure 5: Graphite commutator with indicated mounting hole

A roughness value can be measured on a profile)(bn on a surface (area). There are different
profile parameters available, which define how tmags is calculated from the measurements. The
most common parameters are arithmetical mean daviaf the roughness profil&k{) and maximum
height of the roughness profilBj). The considered commutator mounting hole roughigespecified
by theR, parameter. The measured roughness value forahisaitator should be less than 16 um. The

principle of calculating th&, parameter is shown in Figure 6.

ARTEMIS-JU — GA n°332913 10 2016-01-05 16:08



Public Version COPCAMS Cognitive & Perceptive Caaser

»
y

Roughness profile height

Sampling lenght

Figure 6: Calculation of thd?,profile parameter

The final treatment of the commutator mounting Heldone in the process of turning (Figure 7).
In order to achieve the required quality of the mg hole treatment, several parameters have to be
set. These parameters are feed rate of the ladhedtational speed of the semiproduct, etc. Atiterse
parameters for the specific type of commutatordetermined, they are fixed and are not varied durin
the production process. The most significant fathat influences the hole roughness is the latbke to
wear. With the machine vision system that will meashe commutator hole roughness on-line, it will
be also possible to monitor the wear of the latiob t

_—

| Commutato

Figure 7: The final treatment of the commutator mountingeho
Performance of this use-case will be evaluateddasehe following success criteria:

» accuracy, confusion matrix of the deployed algaonith
» software development and deployment cost,

e power consumption compared to currently used P@ebaschine vision system.
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2.2 Object positioning in a cooper ative multi-camera system with RF
sensing capabilities (GUT)

Objective: In production facilities, information @it assets position plays a key role in production
efficiency. Real time or close-to real time positiof assets, important in production process, nay b
used to limit the number of tools used, to decre¢hsdime of tasks that have to be performed during
production process or to improve the quality oftrenagement process. In KTOR production facilities,
RFID tags are to be attached to different assegs ifeobile tool cabinets, trolleys, plates, etso) they
can easily be located in the production facilitheTinstalled system of smart cameras with RF sgnsin
capabilities will process the information gathefemim RFID tags (active and/or passive) within the
facility to determine the tags’ position, and als@rovide overviews and statistics of assets ufizage
can be used to help factory managers to optimeeitbduction process. The objective of this use cas
IS to test and assess the developed system of samaeras having capability of RF signals sensing to

support the production process. The use-case dmgf#he quality control tasks is shown in Figure 8

USE case: Smart Cameras with RF sensing capabilities

Deliver location data

L

Process data from
n | Smart Cameras With RF
sensing capabilities

Third part software
Smart Camera With RF
sensing capabilities

Estimate location
Process data from
N IP cameras

Facility emploee

R
LA

Facility worker Facility manager

IP camera
(option)

Figure 8: Object positioning system of Smart Cameras \RiEhsensing capabilities use-case

diagram

Actors:

* Smart Cameras with RF sensing capabilities
* |P camera (optional, may not be present in the @BrAonstrator)

» Facility employee (e.g. facility manager, facilityprker, etc.)
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* Third party software (e.g. ERP, ERM, etc.)
Preconditions:

The system is correctly installed covering the avkanterest (the system is using one or more

cameras installed across the facility to deteattassuch as mobile tool cabinets, trolleys, platgs.
Post-conditions:

Success: Assets are correctly positioned/trackediging the close to real-time information to

facility manager/worker.

Failure: System is not able to provide assets iatibn and the possible reason is logged on sever.

2.3 Augmented reality task (TED)

This experiment explores the use of augmentedtye@fiR) as an aid in the execution of
maintenance and repair works on machinery, comptiamdware, electric equipment and other similar

scenarios.

The main objectives of AR applied to maintenance rapair tasks is to improve productivity and
to enable lower skilled technicians to perform sgleaed tasks. It is an area still at very earfgst with
only few pilot projects on the field and no readustrial deployment yet. Head-worn, motion-tracked
displays augment the user’s physical view of ttetesy with information such as object labeling, gdid
steps, real time diagnostic data, and safety wgsnifihe virtualization of the user and maintenance
environment allows off-site collaborators to monaad assist with repairs. Additionally, the int&tgpn
of real-world knowledge bases with detailed 3D ni®geovides opportunities to use the system as a

maintenance simulator/training tool.

All existing AR related trials are based on heawynputing equipment that limits the usability of
the AR solutions. Indeed, many field applicationk/anake sense if the equipment can be easily gorte
by the user (e.g. in army vehicles deployed infigdd, remote oil rigs, etc.). Any efforts pushitigs
kind of extremely resource hungry applications talsamore portable solutions (like, for instance, th

COPCAMs platform) will facilitate future adoptiory bhe industry.

The demonstrator under development will show thtemt@l of this technology, especially in what
involves the interaction between the image capame analysis and the synthetic image generation,

image blending and 3D display.

The application focuses on the optimization ofdk&erent building blocks, with special emphasis

on the implementation of all image processing amalyeis tasks on the GPU processor using standard
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OpenCL. The value of this exercise lays in its digortability to a range of embedded platforms tha
will facilitate the feasibility of future portabl&R solutions by pushing the processing to the camer
This development will leverage the results of ta8KL (Image processing algorithms).

The project will show the potential of AR as a hummaachine interface and, moreover, the potential
of AR to convey context dependent computer genérafermation to the user via the 3D immersive

display.

The COPCAMS based system is composed of a vireality headset (Oculus Rift display)
equipped with a stereo camera (Figure 9). The camvél stream the images to the headset allowing
the user to navigate with the headset on usin@iheideo feedback while those same images are sent
to the COPCAMs platform where all tasks of imagecpssing and object recognition are performed
real time pushing parallel processing to the limifferent object recognition algorithms will beied
allowing the system to provide an augmented reaktyerience by highlighting objects and providing

related information.

The outcome of this processing is used to gendnatenformation will appear in an overlay over

the video feed providing help, guidance or impdrtéata of that object to the user in real time.

-

Figure 9: Virtual reality headset with front mounted steoamera
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2.4 Robot tracking task (UC)

The UC proposes a system and method to obtainabitign of a robot/machine in an industrial
environment applicable to any atmosphere (indooggsitoors). This system comes under the advanced

manufacturing applications’ use case of COPCAM $egio
The system is based on the use of (Figure 10):

» light sources used as markers to calculate relgnsttions of the industrial machinery/
robot,

» astereo camera to display these markers in thgeiobthe scene,

* an angle measuring device (as a gyroscope or @ectcompass) to provide angles of
rotation of the target object at each instantrogti

» and a digital signal processor, with uses the dta@ordinates (from the memory) and
output parameters obtained from the stereo camedaamgle measuring device, to

determine the target object position on the 3D remvhent.

LIGHT
SOURCE
E »| Stereo .
S > Signal
S LIGHT camera
S [ source processor Robot/
& - > i
= — . mac.h.me
= | SOURCE Coordinates position
L >
P — Gyroscope calculator
™ SOURCE
F
i
Robot ¥y
Memory

Figure 10: Schematic of the System Design
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3 Demonstrator architecture and methodology

This section describes detailed architecture anthadelogy of the field tests, presented in the
Section 2. Like the field tests, the architectsrdivided into four major fields: architecture bétquality
control tasks, architecture of the object positigriask, architecture of the AR tasks and architeadf
the robot tracking task.

3.1 Quality control tasks (KTOR, JSI)

The demonstrations will be set up in the industelaironment in KTOR production facilities.
During the demonstration design all safety and roteehnical recommendations will be considered.
The production facilities, where the demonstratbthe quality control task will be set up, is shoin
Figure 11.

Figure 11: KTOR production facilities

The quality control tasks will demonstrate COPCABI3utions in the KTOR production in the
various stages of the commutator production proddesertheless, all quality control use cases will

involve the following hardware elements:

COPCAMS platform (NVIDIA Jetson TK1)
IP camera with appropriate lens and illumination

Mechanical manipulator for the commutators

W N PF

Automation elements for controlling quality contoml the production line (PLC, sensors, etc.)

The selected platform for quality controls in KTGRNVIDIA Jetson TK1 (Figure 12a) with 192
GPU cores. The platform will retrieve captured imsiyom the camera, perform image processing and,
based on the implemented classification modelsflasommutators into the appropriate quality class
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NVIDIA Jetson TK1 platform supports OpenCV framewowhere machine vision functions are
already partially optimized for the implementatmmthe GPU. Currently, in KTOR all machine vision
solutions are PC-based, with implemented machsievalgorithms running on the CPUs. The selected
platform represents an alternative to the currehitti®n and solution beyond the state of the amges

there are no available commercial GPU-based macisien systems on the market.

In the quality control tasks the selection of thenera resolution, type of the lens and illumination
are crucial. The camera resolution determines tinémal size of the defects that can be detected. Th
selected cameras have to be certified for the tnidbsenvironment usage and resistant to the
electromagnetic interference (EMI) caused by thedpction lines. The selected IP Gigabit Ethernet
(GigE) camera is shown in Figure 12b. For eachaase, the lens and illumination will be selected
based on the properties of the semiproduct antygeeof the defects we want to detect. The choice o
a suitable illumination is crucial to ensure constand reliable analysis of the inspected part& Th

selection of the lens and illumination will be damapirically.

a) b)
Figure 12: Images of: a) NVIDIA Jetson TK1 platform, b) teelected IP GigE camera

In order to implement the quality control taskstte selected production lines, adequate mechanical
manipulators with the automation elements will besigned. These manipulators, incorporating
Programmable Logic Controllers (PLCs), will commeaie with the COPCAMS platform to ensure
smooth operation of the production lines and previte physical classification of the commutators.
Manipulators with adequate automation elementsheildesigned in KTOR. Schematic representation

of the connections between the system elemenkmisrsin Figure 13.
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PLC P Additional status info over I/O line _production line,
(‘| o o o o o o ,’

Figure 13: Schematic representation of connections betweesystem components

Three quality control tasks share identical arclitee and methodology. Each use case scenario
consists of the following actions:

a) semiproduct is traveling along the conveyor belt,

b) when the semiproduct reaches the predefined paith® production line (i.e. triggering
point), it is transferred to the quality controkssm,

c) images of the semiproduct are captured,

d) machine vision algorithm extracts informative &iirtes,

e) based on the attributes and pre-built classificatimdel, semiproduct is classified into the
appropriate quality class,

f) semiproduct is either released back to the prooluditie or eliminated from the production

process.

The sequence diagram of the quality control taskéwvn in Figure 14.
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To allow undisturbed production of the commutataikthese actions have to be performed within
the cycle time of the specific production procdste total cycle time is composed of the maniputkatio
time, the commutator inspection and classificatiore. In order to ensure continuous operation ef th

production line, hardware and software have torbpgrly selected and configured.

The selected quality control tasks differ regardihg purpose of the demonstration and the
methodology used for the task implementation. Theedsional task measurement serves as a
validation of the selected platform and methodaegiand it is identified as a less complex tasle Th
methodology in the soldering quality control tasidaoughness measurement task will be upgraded
with ICT methodologies (machine learning and omation methods) and will represent the software
framework for developing new quality control applions based on the selected platform and

developed methodology.

3.1.1 Software methodology

As described in Section 2.1.1 in the dimensionalsneement task, three commutator characteristics
have to be checked: distance between two opp@siteents, angle between two adjacent segments and
area without the copper inclusions (Figure 3). Teasure the listed characteristic, dedicated machine
vision algorithm will be developed and implementedthe NVIDIA Jetson TK1 platform. The concept

of the software flow is shown in Figure 13.

Dimensional measurements
of the copper base

Locate the copper base
position

Calculate the position of
the center point

v

[Lccate the position of the}

coper base anchors

¥

., h'd ‘.

Measure the angle
between the adjacent
anchors

Measure the distance
between the opposite
anchors

Check the presence of
the copper inclusions

Classify the copper base
OK/NOT OK

Figure 15: Software flowchart for the dimensional measurentask
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The aim of the dimensional measurement task istdywthe described hardware infrastructure.
Since the dimensional measurement task does noiredte use of the advanced ICT methodologies,

it is expected that will be the first use case enpénted on the production line.

The soldering quality control task and roughnessasueement task include advanced ICT
techniques and share the same methodology in tefre®nstructing the classifier by combining

computer vision, machine learning and evolutiorgmization techniques.

The methodology for automating these two qualitytoa tasks is shown in Figure 16. It consists

of three main stages: image processing, defectifiagion and tuning of the machine vision funatio

DE solution vector

parameters.

: Parameter |
: Optimization settings | Computer vision |
: algorithm - algorithm |
l A |
: Parameter settings Extracted |
| quality attributes |
‘ |
: Machine Y |
| Result learning results | Machine learning | !
\ evaluation | algorithm :
‘ |
L |

Prediction
model

Figure 16: A schematic view of the proposed automated patembening methodology

The image processing stage consists of severa §ep. capturing of images, region of interest
(ROI) extraction, attribute/feature extraction) ainwill be adapted to the specific quality contask.
In the defects classification stage, machine-legraigorithm builds classification models basedhean
attributes extracted with the machine vision algponi. Their quality will be measured by the prededin
fitness function (e.g. prediction accuracy). Deprgaf the problem type (classification or regresi
the corresponding machine-learning algorithm wid belected. The last stage in designing the
automated soldering control is tuning the machiigorm function parameters. There are many
optimization algorithms available for this task. Agplained in detail in Section 4.1.1, for the

preliminary tests we will use the Differential Eutibn (DE) algorithm [5].
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3.2 Object positioning task (GUT)

Object positioning in a cooperative multi-camerateyn with Radio Frequency (RF) sensing
capabilities is a concept that expands the sertsipgbilities of camera systems by adding means and
algorithms to a smart camera system(s) that wdkhathem to “understand” and “interpret” RF waves
present in the environment. One of the possibletfanalities that are driven by industry needs and
providing high added value (e.g. by optimizing proiibn processes) is object positioning. To better
understand object positioning in a cooperative Rualinera system with RF sensing capabilities and to
ensure that the algorithms will address the businegds, the system concept will be presented using
the environment where it will be finally installéat pilot tests (one of KTOR production facilityljhis
is a large indoor environment with a large numbempduction machines. The pictures of the
environment are presented below (Figure 17).

Figure 17: One of KTOR production facilities

According to information provided by KTOR repres&ives, there are three groups of objects that
have been initially chosen as those to be localiged Figure 18), namely:

- Plates
- Mobile tool cabinets

- Trolleys
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Figure 18: Photos of exemplary plate, mobile tool cabinet @rolley

The task of assets localization in one of KTOR stdal facilities brings many challenges and puts
many requirements on the localization system. Tdekdpround scene containing the production lines
and workers can change dynamically and in an umgiedde way. The localized assets can be obscured
not only unintentionally, but such situation isesftthe result of their typical functionality. Aneth
attribute that characterizes every subgroup oflioea assets is lack of distinctive features thateasy

to observe by a vision system. Such environmentozate many problems for typical Computer Vison
algorithms and puts the necessity of use of otlata dources that can provide useful support to the
localization process. The use of measurementsddd signals parameters as an additional data source
can help solve these problems, as radio signalsaatilly immune to no LOS (Line Of Sight) problem
and their indoor behavior differs depending onftegquency. Moreover, the identification problem is
very easy to resolve and an additionally radio tas#osystem provides a very useful communication
layer.

To fulfill all system requirements, the followingstem elements will be involved (Figure 19):

1. Integrated camera (the key element of the system).
2. Active RFID tags (2.4 GHz) with additional sensacs$iiators
3. Passive RFID tags and readers (868 MHz)

Figure 19: Exemplary active RFID tags, passive RFID tagsarderas
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The picture bellow (Figure 20) presents simplifmhnections between the localization system
components based on a Smart Camera with RF secegiadpilities.

Data Acquisition

Preprocessed
dstz
Active RFID 'E
Passive RFID antt g8
Computer Vision D.g_'«‘i ]
IP cameras =

[option, may not
appearinT5.2
demenstrator)

Presentation

Figure 20: Simplified connections between the system comptne

Each of this technologies will provide localizatidata. Camera based Computer Vison may operate
based on background subtraction algorithms (e.gus&an Mixture Model) and in cooperation with
active tags which will provide dynamic localizatimfiormation using codes emitted by integratettlig
source (e.g. LED). Active tags will also allow feasy identification of object by the vision subsyst
Active RFID will provide information acquired froRF signal properties that includes RSS (Received
Signal Strength). Measurement of this propertigb wboperation with dedicated algorithm allows for
calculation of object position in the investigat@a. Passive RFID allows for localization based on

proximity and together with dedicated antennasl&ermination of direction of signal arrival, trerse
as for active RFID.
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To provide a clear view of the whole localizatigristem, the list of components has been divided
to three parts based on their functionality. Eaelt gontains modules that provide necessary

functionality and omits the issues like systemlralion:

1. Smart Camera with RF sensing capacities
a. Integrated Camera
i. USB camera
ii. Active RF tag (2.4 GHz)
iii. Passive RFID reader (868 MHz»ption, may not be present in the final
version of device]
iv. multicore System on Chip (KeyStone2 platform)
b. Active RFID tags
i. RF module (2.4 GHz)
ii. Steerable LED
iii. UHF passive RFID sensing unit [option, may not bespnt in the final
version of device ]
iv. Passive RFID reader (868 MHz)
v. Passive RFID tags (868 MHz)
2. Integration & data fusion infrastructure
a. Computation server (for numerical computations)
b. Switch
3. Additional infrastructure
a. Power sources
b. Data presentation
c. IP cameragoptional, may not be present in the demonstrator]

Each of the enumerated parts fulfills its role ihole system. Smart Camera with RF sensing
capabilities is a device that merges advantagdmibf vision and RF measurements. The Integrated
Camera is an integrated device that has both vawh RF sensing capabilities and integrated
computational unit (KeyStone2 mSoC). The main athge of this device is its ability to gather all
necessary measurement data and provide processdiddtion data. The necessary algorithms can be
implemented to work on the device. These propehnige® huge impact on the whole system in terms of
its reduced complexity and scalability. Integra@amera being a component of Smart Camera with
RF sensing capabilities will also have the captilf working in the arrays or meshes of same kihd
devices. The main sense of cooperation is the egghaf raw or preprocessed measurements and

management of the whole system.

Active RFID tag is an integrated device able to oamicate with Integrated Cameras and
Computation server. Its main purpose is integratbmearly all kind of data sources in one device
(some of them indirectly) which allows for systeomplexity reduction and, what is most important,

easier possibility of merging all kinds of datanather very important advantage of such integrasgon
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greater ability of adjusting data sources behadggending on changing environmental conditions and
simpler managing of whole system. Depending of iollae system Active RFID tag can be integrated
in Integrated Camera, play the role of Active RF#at is being localized or be a standalone referenc
device.

Passive RFID tags together with Passive RFID readey intended to work in places where the
active tag will not be used or simultaneously. #&tRFID tag, due to its functionality, has to have
dimension and structure capable of containingfatsanodules and provide them with a power source.
Due to this fact, in places where not all activg fanctionalities will be necessary or where

dimensionality of data source device is extremeilgartant, standalone devices will be used.

The role of Active RFID tags not being localizeddgmassive RFID readers not being part of
Integrated Camera is to extend smart camera withdRBing capabilities, so that it is more flexiohel
adjusted to practical implementations and ablertwige/analyze data information from places where
the Integrated camera will not be used. We caindisish three reasons of no Integrated Camerareade
usage. The first reason is connected with its glaysiimensions — if there is no place or possibftir
placing Integrated Camera, then standalone destoagld be used. The second reason is connected to
the area of interest — if the part of environmeataxe interested in is too difficult or makes ingibke
some kind of data measurement, the usage of fpllmlity sensing device will not be economically
effective. The third reason is insufficient amoohtntegrated Camera devices. If RFID Reader is not
used as a part of Integrated Camera, Active RFI@ppravides an interface that allows communication

with Integrated Camera.

The part called “Integration & data fusion infrastiure” is responsible for communication, system
functionality, data integration and computationaer. As Smart Cameras are capable of working as
standalone devices, other data sources need dxpeat@ssing and the last stage of data fusion and

integration need to be processed on device.

The last part called “Additional infrastructure’rist strictly connected with the Smart cameras with
RF sensing capabilities system. This part represamtexternal device with software responsible for
presentation of localization data with the end ssstem governance interface and additional devices
necessary for system work, but does not providetionality. Additional IP cameras that can be
integrated with Smart Cameras with RF sensing dapacystem and extend its operational region

without usage of Smart Cameras devices are enugddrathis section.

Figure 21 presents a simplified diagram of systemtspand data flow between the components.
Some of solutions (marked with dashed line) athiatmoment considered as optional and may not be

implemented in the final version of system or ia 5.2 demonstrator.

ARTEMIS-JU — GA n°332913 26 2016-01-05 16:08



Public Version COPCAMS Cognitive & Perceptive Caaser

i

I
I
I
: Localized Objects
: Smart Cameras with RF sensing capabilities !
| oo e e e e Switch
| Active RFID Active RFID | |
L Tag T Tags I
" i
I
| :
1 i Server
Passive UHF |
RFID Tag S PassiveRFID |
Readers |
Data
presentation
Integrated camera
device
[ |
Y. : Pa&;w_: RFID |
Reader 11
[ihoscacacacy |
|
|
|
= 3 USB Camera [~
visual communication
868 MHz radio communication
L Active RFID | |
Tag — 2.4 GHz radio communication
ethernet
other
mSoC — dashed line indicates optional
_ solution that may not appear
in the final version of the device
or in the T5.2 demonstrator

Figure 21: Simplified block scheme of expected system aechitre and data flow

Processed localization, visual and radio datalleated in the computational server. Especially due
to the fact that UHF RFID Readers and Active Tagsnat part of Integrated Camera the server plays
an important role in the whole system performanod eapabilities. Computational server stores
software responsible for system governance, somalabé integration algorithms, localization

algorithms (if not implemented in Integrated Carsg¢@nd data storage.

3.3 Augmented reality task (TED)

The COPCAMS system will record and analyze the éthe system user through a stereo camera.
In addition, for a proper posterior 3D visualizatiomages need to be undistorted and rectified. The
COPCAMS platform will help also in this task.
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The data processed by the COPCAMS platform widre to the NUC CPU for further processing,
where a 3D image will be generated combining ble¢hreal data from the cameras and the augmented
reality information generated in real time. Theutdsg images will then be projected to the headset
where the user will perceive the illusion of seet@ja integrated in his sight. The viewer will be
developed using Unity3D because of the SDK for OsWRift headset usage. The architecture of the
system is shown in Figure 22.

STHORM

Image Processing

NUC CPU

- AR/VR Data generation

- Final image composition

Figure 22: Demonstrator architecture

The COPCAMS platform will not only apply differepteprocessing algorithms in order to produce
undistorted and rectified images that will be pded to the NUC CPU for the 3D image generation,
but will also run object recognition algorithms thell provide the NUC CPU with all the necessary
information to generate the augmented reality scene

The core object recognition algorithms developetl be based on key point model matching,
although other alternative identification methodl lse explored.

Image processing algorithms will be implementedngsOpenCV and OpenCL to take full
advantage of the COPCAMS platform.

This preprocessing will leverage the performancthefwhole system, so the NUC can be used in

visualization related CPU intensive operations Bkescene generation.
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3.4 Robot tracking task (UC)

3.4.1 System implementation
This section explains the system for obtainingpfitbie use of one or more luminous markers, the
position and orientation of a user, in differensgible environments, which may be indoor or outdoor

in a proposed controlled setting.

The method consists of different stages, wheranpet data from the cameras and gyroscope is
processed to obtain the target object positionthé following lines, the data path is explained to

understand how each phase treats data and obit@remt output values.

e Stage 1: input data from the environment
o0 Capture right and left images from the stereo camer

0 Obtain rotation angles from a gyroscope or an eaiat compass

* Stage 2: detect movement and markers
0 Check the value of the gyroscope to know if therimas turned
o Compare the current image frames and the previnage frame to notice movement

from the user
o0 Apply an algorithm to get the image coordinatethefreference markers and its radius

(u, v, r)

e Stage 3: identify movement type
0 Recognize the type of movement performed by the, ifsé is frontal or horizontal,

considering the markers radius.
o Verify current markers coordinates by comparingnttvéth the previous image region.

* Stage 4: this step is split in two sub-stages, nidipg on the type of movement detected.

Frontal movement:
0 Obtain the distance (m) between the user and thekemeby applying stereo

triangulation.
0 Obtain the distance (m) between the user and thekemeby applying linear

triangulation on the left image.
0 Obtain the distance (m) between the user and thekemeby applying linear

triangulation on the right image.
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Horizontal movement:

0 Obtain the distance (m) of the horizontal displagetiby applying a version of stereo
triangulation (instead of taking two images of Hame time sifted, it is going to use
one image of the current time and another of tis¢ tgae) on the left images.

0 Obtain the distance (m) of the horizontal displagetiby applying a version of stereo
triangulation on the right image.

0 Obtain the distance (m) of horizontal displacentgnapplying linear triangulation on
the left image

0 Obtain the distance (m) of horizontal displacentgnapplying linear triangulation on

the right image

e Stage 5: Get the user distance movement
o Check and select the correct results of distanalesilated on the stage 4, knowing the
type of movement (frontal or horizontal), the typiedisplacement (if it is a frontal
movement it can be an approaching or reprocessorg the marker and if it is a
horizontal movement it can be right or left shit)d the number of detected markers

on the image.

» Stage 6: Obtain the target object position on theevironment
0 Get the final position by considering the data fritva stage 5, the previous position

and the user rotation.

3.4.2 UML/MARTE Model

In order to support all different stages of theafla powerful high-level methodology has been
used. It is based on UML for development of HW/Swbedded systems; and the MARTE profile has
been used to consider all the specific charadiesistlated to the embedded system design. This
methodology can completely describe the systemblemgaautomatic generation of the input code.
UML/MARTE model is based on graphical descriptionkjch are called views. These views describe
the system functionality, the target platform ahd tesource allocation. They are specified by the

corresponding stereotypes:

1. Platform Independent Model (PIM) describes the fiomality:
+ Data View,
* Functional View,
* Application View,
» Concurrency View,

* Memory Space View.
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2. Platform Description Model (PDM) describes the foah where the functionality can be
mapped:
« HW Platform View,
* SW Platform View.

3. Platform Specific Model (PSM) describes the mapm@hthe functional components in the
platform:

e Architecture View.

The work carried out on the first version of thedmbhas been focused on the development of
functional view, application view and architectwiew and included a first definition of the system
functions, their input and output signals, thetiefeship between those functions and the descriptfo

the selected platform.

* Functional View: in order to enable the communimatbetween components, a set of
services have been defined. These services ar@agtonto interfaces (Figure 23). These

interfaces are specific for each inter-componentroanication channel (Figure 24).

«Interface» «Interface»
Interface_Main_Stagel Interface_Main_Staged
+ camera( + in: bit{unique}, + out: image{unique}) + stereo( + in: u_coordinates{unique}, + in: u_coordinates{unique}...

+ triangulation( + in: u_coordinates{unique}, + in: u_coordinates{u...
+ stereo_frames( + in: u_coordinates{unique}, + in: u_coordinates{...
+ triang_frames( + in: u_coordinates{unique}, + in: u_coordinates{...
+ desp_horiz_type( + in: u_coordinates{unique}, + in: u_coordinate...
+ markersNumber{ + in: u_coordinates{unique}, + in: u_coordinate...

+ degrees( + out: float{unique})

«Interface»
Interface_Main_Stage2
«Interface»
+ marker_detection( + in: image{unique}, + out: float{unique}, +... Interface_Main_Stage5

+ movement_detection({ + in: image{unique}, + in: image{unique...
+ giro_detection( + out: float{unique}, + in: float{unique}, + out: ...

+ mov_vertical{ + in: float{unique}, + in: float{unique}, + in: float...
+ mov_horizontal({ + in: float{unique}, + in: float{unique}, + in:flo...

«Interface»
Interface_Main_Stage3 «Interface»
Interface_Main_Stage6

+ marker_check( + in_: markers{_unique}_ + in: markgrs{uniquz_e}_ +...
+ desp_vert_type( + in: float{unique}, + in: float{unique}, +in:flo... + position( + in: coordinates {unique}, + in: coordinates {unique}, ...
+ mov_type( + in: markers{unique}, + in: markers{unique}, +in: ...

Figure 23: Interface diagram

» Application View: it shows the different componeimsthe system and its relationship to
others. A component offers a set of services (plexviinterface) and others components

makes use of them (required interface).
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=Component=
System
structure

+ stagel_port

+ main_port

+ stage2_port

+ stage3_port

+ staged_port

+ stage5_port

i
B -
+ main_port

+ dataBase_port

+ main_port

Figure 24: System application structure

» Architecture View: it is a platform specific mddehich defines the mapping of the functional

components in the platform (Figure 25). It desaibhew the functionality was allocated on our

development board, ODROID-XU3, which has 4 big sq@ortex-A15) and 4 LITTLE cores
(Cortex-AT).

«Components»
System
structure

+ stage4 thread : Thread
structure
'. j | i
iy i : :
structure structure structure

Figure 25: System mapping

It also includes the architecture of the developnieard (Figure 26). It describes the distribution
of the elements, where processors Cortex-A7 (ppro84) and processors Cortex-Al5 (proc5-proc?)
are connected to 2GB LPDD3 RAM (RAM) though an A3B bus (main_bus), two bridges (bridge)

and two AMBA buses (bus).
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«Components» m
System
structure
+ proc0 : ARM_CortexA7 + procl : ARM_CortexA7 + proc2 : ARM_CortexA7 + proc3 : ARM_CortexA7
structure structure structure structure
) . [ |

[ ]
L L] - /
+ mem0 : Memon
+ bus : AMBA structure

[::' structure

+ main_bus ; AXI/AHB

structure

+ RAM : LPDDR
| structure

+ mem1l : Memory
+ bus : AMBA ‘ structure
structure
[ ] [
+ proc4 : ARM_Corte; + proc5 ; ARM—cortexA15)  + proch : ARM_CortexAl5 —l proc7 : ARM_CortexAl5

structure

structure

structure structure

Figure 26: Platform

4 Related lab experiments

4.1 Quality control tasks (KTOR, JSI)

architecture

4.1.1 Quality inspection of copper-graphite soldering

We are concerned with the estimation of the qualitycoppergraphite joints in commutator

manufacturing — a classification problem in whiohwish to detect whether the joints are solderdd we

or have any of the four known defects:

- Metallization defect: presence of visible defects on the metallizatayer,

- Excessof solder: presence of solder spots on the copper pad,

- Déficit of solder: lack of solder in the graphite-copper joint,

- Disorientation: disorientation between the copper body and thplgte disc.

Commutators consist of a number of segments, dépgod the model (the considered commutator

model from Figure 27 a) consists of eight segmelits) single segment has any of the listed defects

the whole commutator is labeled as defective anbved from the production process.
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Figure 27: Images of: a) a graphite commutator, b) a comtoutaegment, c) a ROI for
metallization defect, d) a ROI for excess of sgldgra ROI for deficit of solder, and

f) a ROI for disorientation

Different defects occur in different regions of tt@mmutator segment. For example, the region
where the excess of solder is usually detectedfereht from the region where disorientation can b
observed. Therefore, images of commutator segrmeantbe divided into four regions of interest (RQIS)

one for each defect (see Figure 27).

Because five different outcomes are possible (cases where two or more defects appear on a
single commutator segment are labeled with justdmiect and are not differentiated further), watre
this as a classification problem with five class#file KTOR is indeed interested in keeping steusst
of the detected defects, their main concern isbdalse positivesare found. This means that cases
when a defective commutator is labeled as withefgats are to be avoided as much as possible. This

is, of course, very hard to achieve.

4.1.1.1 Automated quality-control procedure

This quality-control procedure can be automatedneans of an on-line classifier that can assess
the quality of commutators as they are being manufad. A classifier for this task can be const&dct
by combining computer vision, machine learning @awblutionary optimization techniques in the

following procedure:

1. Define a set of image features.
2. Use an evolutionary algorithm to search for theigalof image processing parameters that
result in the highest fithess. Evaluate each smiulising these steps:

a. Based on the chosen parameter values, use the ipragessing methods to
convert each image of a commutator segment inectov of feature values.

b. Construct a classifier (in our case a decision)trdgere the vectors of feature
values serve as learning instances. Estimate fitasgerformance and use this
value as solution fitness.

3. Choose the best found classifier and the correspgmuiage processing parameters to detect

defects in images of new commutator segments gsatieebeing manufactured.
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Let us now describe the steps of processing comarutegment images, building decision trees

and optimizing classifier performance in more detai
Processing commutator segment images

Processing of images is the most time consumirngagshis procedure and is done in several steps.
First, the image of the commutator segment neetls fwoperly aligned. Next, the four ROIs shown in
Figure 27 need to be detected. This is done byyagpfour previously prepared binary masks to the
image, one for each ROI. Each of the ROIs is furginecessed as follows. Depending on the ROI, the
image in RGB format is converted into a gray-s@alage by extracting a single color plane. Based on
expert knowledge, red is used for all ROIs excleptROI for excess of solder, which uses the bll@r co

plane.

The final three steps require certain parametebgteet. A 2D median filter of size 1 x 1, 3 x 3 or
5 x 5 is applied to reduce noise. Next, a binargghold that can take values from {1, 2, ..., 256} is
used to eliminate irrelevant pixels. Finally, andiéidnal particle filter is employed to remove all
particles (connected pixels with similar propeftieéth a smaller number of pixels than a threshold
value from {1, 2, ..., 1000}. Note that because & tliversity of the defects, it is reasonable taiass
that these three image processing parameters sbhesket independently for each ROI. This means that

in total, 12 image processing parameters need sehe
After these image processing steps, the chosef &stures is extracted from images of each ROI:

- number of particles,

- cumulative size of particles in pixels,
- maximal size of particles in pixels,

- minimal size of particles in pixels,

- gross/net ratio of the largest particle,

- gross/net ratio of the cumulative size of particles

To summarize, computer vision methods are usedngert each commutator segment image into

a vector of 24 feature values.
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Building decision trees

Commutator segment images with known classes agktoonstruct a database of instances, upon
which a machine learning classifier can be builte \bhose decision trees since they are easy to

understand and implement in the on-line qualitytedrprocedure.

Note that the classifier predicts defects on coramout segments. For the final application,
predictions for all segments of a commutator nedaktaggregated in order to produce a prediction fo

the commutator as a whole.
Optimizing classifier performance

Classifier performance can be measured in sevexg wanging from classification accuracy, the
F-measure to other, even custom functions thatrdepe the domain. Classification performance is
estimated with 10-fold cross-validation, a popukehnique for predicting classifier performance on

unseen instances.

In order to find the values of image processingpaaters that will result in a classifier with high
accuracy, an evolutionary algorithm is employedséarch in the 12-dimensional space of image

processing parameter values.

4.1.1.2 Performed experiments

Here we report on lab experiments that were peddrim order to test the suitability of the desatlibe
automated quality-control procedure. While the sisithad different experimental setups, they wdre al
performed on the same commutator soldering domam363 instances and an uneven distribution of

classes (see Table 2).

Table 2: The commutator soldering domain

Class Number of instances  Frequency [%]
No defect 212 58.4
Metallization defect 35 9.6
Excess of solder 35 9.6
Deficit of solder 49 135
Disorientation 32 8.8

Total 363 100.0

The initial experiment [2] explored whether computesion, machine learning and evolutionary

optimization techniques could be employed to finék and accurate classifiers for this problem. The
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DEMO (Differential Evolution for Multiobjective Opnization) algorithm [4] was applied to search for
small and accurate trees by navigating throughsffaze of decision tree parameter values, while the
parameters of the computer vision methods werel fie&alues chosen by an expert. Classifier acgurac
was chosen to measure classifier performance. flidg found this setup to be beneficial, but urged t
focus future efforts on more sophisticated extaarctif features from the images as this seemeahttehi

the search for more accurate classifiers.

The second study [3] presented a different setughfe automated quality-control procedure to
address the issues from the first study. Insteagbtimizing decision tree parameter values, diffted
evolution (DE) [5] was used to search for the lsetting of image processing parameters. The single
classification problem with five classes was sjpiib four binary classification sub-problems, where
each sub-problem was dedicated to detecting ortbeofour defects and used data only from the
corresponding ROI. In addition, instead of clasatfion accuracy, the measure to be optimized was se
to a function penalizing the portion of false négeg 100 times harder than the portion of falsetjves.

The study found that the new combination of computsion, machine learning and evolutionary
optimization techniques was powerful and achievades good results. While optimization with DE
was always able to find better parameter settinggniage processing methods than those defined by
domain experts, some sub-problems proved to beehatdén others. For example, detection of
commutator segments with excess of solder achiavsdatisfactory accuracy, while the detection of

metallization defects did not.

The third study [1] investigated the correctneghefimplicit assumption from [3] that only featsire
of the sub-problem-specific ROI would influence tdutcome of the classifier for that sub-probleme Th
study found that features from other ROIs can hgonmant as well, suggesting that it might be better

not to split the classification problem into suleiplems after all.

4.1.1.3 Lessons learned
Based on these lab experiments (and other expeisroéamaller scale not reported here), we came

to the following conclusions and suggestions fourfel work.
Suitable automated quality-control procedure

The experiments have proven that the designed améahquality-control procedure is indeed
appropriate for this problem and we only need tediune some of its elements to improve its

performance.

Larger dataset needed
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Most of the experiments have shown that the comimutoldering domain from Table 2 is not
large enough for constructing more fine-grainedsifeers with better performance. Therefore, weshav
already produced a larger dataset containing 588adators, corresponding to 4264 instances of the
domain, which will be used to train the classifiéhat will be finally implemented on the KTOR

production line.
Need to improve detection accuracy for some defects

The difficulty of detecting a defect differs veryuoh depending on the defect in question. For
example, the excess of solder is much easier grtttan the deficit of solder for humans as well a
for computer vision methods. While in the reporéggeriments classifiers often achieved satisfactory
performance on some defects, results on otheridefere not yet acceptable and more effort is requi
to improve them. Based on the findings of the pmasistudies, future work will be directed mostly
towards the processing of commutator segment imagesre different ROIs and new features should

bring the sought improvement.

4.1.2 Measurement of the commutator mounting holes roughness

The aim of this task is to estimate the qualitytled commutator mounting hole treatment. The
validation of the treatment quality is done by meam®y the roughness of the hole surface. For the
specific commutator the allowed value of roughnesspecified by thdz, parameter. This parameter
may achieve maximum value of 16 pm. Commutatorstage roughness of the mounting hole above
this value are not acceptable and must be remaweed the production process. Magnified mounting
hole area is show in Figure 28. The mounting hotéase can be presented as valleys and peaks along

the measured surface.

Figure 28: Magnified commutator mounting hole area

In order to validate the feasibility of the mougtimole roughness measurement, several experiments

were conducted. The problem of roughness measutaraetbe divided into the two type of tasks:
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a) Classification of the commutator into the approjeriginary class (commutators with adequate
and commutators with inadequate mounting hole rnags),

b) Prediction of the roughness value — regression.

According to the problem type (classification ognession problem), suitable measure for the
accuracy must be selected. Since KTOR would lilditoinate all inadequate parts from the production
process, théalse positiveshould be minimized. In case of prediction of tbeghness value, the error

of predicted value should be minimized.

4.1.2.1 Automated quality-control procedure

Similarly as inspection of the copper-graphite edliy, this quality-control procedure can be
automated. An on-line classifier can assess thktyjod the commutator mounting hole roughness as
they are being manufactured. By combining compuision, machine learning and evolutionary

optimization techniques we can automate the praeeofubuilding the classifier.
Processing Commutator M ounting Holes | mages

In the real-world application, the processing gftoged images is the most time consuming task. It
Is composed of several sequential steps in whiathma vision algorithms are applied. To gain optima
results, certain parameters of these algorithmg briset. First, the image of the mounting holetbas
be cropped to the desired size of ROI (Figure R@xt, the 2D median smoothing filter is applied to
reduce the noise on the image. To achieve the aptisults the filter size must be set correctiyg(s
1x1,...,100 x 100). After the image is filteredrtain features are extracted from the grey scwge.
These features forms part of a feature vector, lwtidater used as an input to the machine learning
algorithm. Next, a binary threshold is used to reensome additional irrelevant pixels. Since thaitnp
image is 8-bit greyscale image, the binary thrasbah take values from {1, 2, ..., 256}. Finally, sed
set of features are extracted from the binary ineud added to the feature vector. In total, 7 image

processing parameters need to be set.

The result after these image processing stepéstare vector, containing 25 different features of

each captured image. Some of these are:

- number of valleys on the image,

- number of peaks on the image,

- distance between the adjacent valley and peakeoimtage,

- 8-bit grayscale value of the lowest valley,

- 8-bit grayscale value of the highest peak,

- calculated Fast Fourier Transform (FFT) valueshenline profile along the measured surface,

- eftc.
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Building a classifier

The result of the above procedure is a databaseinog feature vectors of processed images. As
described in Section 4.1.2, this task can be caliMided into two subtasks: classification and esgion
task. Based on the built database, the machineitgpalgorithm induces a decision model — a deisio

tree in case of the classification task or a regoestree in case of the regression task.
Optimizing classifier performance

To optimize the classifier performance an evoluigralgorithm is applied. The algorithm searches th
25-dimensional space of image processing paranvelees and tunes them until the best fitness
function value is achieved. The model performarscestimated with 10-fold cross-validation. The

procedure is the same for the classification agdession task.

4.1.2.2 Performed experiments

To test and validate the presented methodology soitial experiments were performed. The
experiments were performed on the commutator solglelomain with 300 instances and distribution
as shown in Table 3. To obtain the reference vabi¢se mounting hole roughness, all commutators
mounting holes were measured with a stylus pro#ien Each mounting hole roughness was measured

three times, and then averaged.

Table 3: The commutator mounting hole roughness domain

Class Number of instances  Frequency [%]
Roughnesf,< 16 um 159 53.0
Roughnesf,> 16 um 141 47.0
Total 300 100.0

The initial experiment explored the possibility erhploying computer vision, machine learning and
optimization techniques for autonomous buildingh&f binary classification model. The DE algorithm
[5] was used to vary and search for the optimairggt of the machine vision function parametersjavh
parameters of the machine learning algorithm wetecsthe default values. The classifier perforneanc
was measured by the classification accuracy. Tudydbund that DE algorithm rather quickly iterates
to the solution, where classification is 100% aateir Furthermore, optimized classifier was able to
100% classify the instances based on just ondatitri- FFT frequency on the line profile along the

measured surface.

After the validation of the proposed methodology ttie binary classification problem, the

regression problem was tackled. The goal of theessjon task was to calculate the measured value of
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the roughness. For this purpose, the regressioes tedgorithm was employed. The classifier
performance was measured by the root mean squaedRMSE). The DE was used to search for the
best settings of the image processing parameteverd runs of the DE were performed and the best
run achieved the RMSE value of 0.94. Although thsult is quite incentive, there are possibilifi@s
improving the regression model (e.g. through thteaekon of additional attributes from the imagelan

optimization of the machine learning algorithm paegers).

Based on the performed lab experiments the fedgilol the measuring of roughness based on
machine vision procedure was confirmed. Furtherimtire proposed methodology, which includes
machine learning and optimization techniques, hesvgn to be successful in finding better
classification model compared to the manual settihgnachine vision parameters. However, the

problem of the regression model accuracy will béhier analysed.

4.2 Object positioning task (GUT)

4.2.1 CV based positioning of Active RFID Tag

To proof the concept of active tag positioning,esal’ experiments were prepared. The main aim
was to check the effectiveness of proposed metbggidlee deliverable D3.6) in terms of processing
time and a proper identification. Second aim wamitmic the conditions of real industrial hall angku
a high-resolution cameras as well, to acquire largkable database of video sequences for future

research.
The prototype positioning subsystem consisted igjufieé 29):

e Control unit — personal computer with appropriate software ravide communication
between all other parts of the system (cameras]egis tags and so on), to visualize results
and to maintain overall performance.

e Camera device (with lens) to provide video stream of a scene. Med on a metal stand
and placed adequately to the position of visuad.tag

* Wirelessrouter/gateway to provide network gate (IPv6) for JennetIP protoc

* Active Tag prototype — mobile JennetlP devices with LED top-mountedton

In final solution functionalities of all componentsll be provided by system of Smart Cameras with

RF sensing capabilities that are described in Suilose3.2.
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Figure 29: The scheme of developed positioning subsystem

We used simple amplitude-shift keying modulatiorémsmit signal from WLT to camera device.
Symbol time was set to 100 ms, so the whole sequiernk 1.4 s (Figure 30).

0
0o o1 02 03 04 05 06 &Y 08 09 1 1,1 12 13 14

1 0 1 0 X X X X X X X 0 X 1

Figure 30: Exemplary sequence transmitted as identificadio\ctive Tag
0, S, S2, S3, A4, S5 — Constant synchronization bits.

BO, B1, B2, B3, B4, B5, B6 — Sequence data bits carrying a unique WLT ifieation.

ARTEMIS-JU — GA n°332913 42 2016-01-05 16:08



Public Version COPCAMS Cognitive & Perceptive Caaser

P — Parity bit.

Proposed algorithm [21]was applied to acquired canmeage. In Figure 31 the scene image and
masks produced by algorithm stages are presemi¢le llast image all Tags are positioned (in image)

and identified.

Figure 31: Exemplary steps of tag detection algorithm

4.2.1.1 In-image tag positioning

The first task was to examine the effectivenegositioning tags on the camera image. Experiments
were performed in “Linte”2” laboratory located hretFaculty of Electrical and Control Engineering at
the Gdansk University of Technology, that can leatd as fine reproduction of a common industrial

hall (Figure 32). As the camera device Point GrelgA& USB3.0 cameras were used.
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— ia #

Figure 32: The industrial hall used for test purposes

The aim of experiment was to prove efficiency apmsed algorithm in terms of processing time
and accuracy. A few Active RFID Tags were placedhie camera field of view and localization

command was triggered. Measurement procedure ¢emgithe following stages:

Retrieving the list of currently available (conrestt Active RFID Tags.
Sending unigue blinking sequence to each of aJailabtive RFID Tags.
Triggering localization procedure requested by .user

Start video stream acquisition from the camera.

Broadcast “start sequence” command to all availdbigces.

After calculated time, stop video acquisition.

Searching for known sequences in video buffer.

© N o o b~ 0D

Matching sequences with corresponding devices.
The three simple performance indicators can béndisished:

* Overall measurement time — duration of the whole measurement proceduren fsrashing
“start” button, to get tags positions (steps 3 — 8)

» Video analysis processing time — duration of computer vision algorithms (step 7).

» Podtioning efficiency — ratio of correctly found and identified Activads in camera frame

to all connected and visible devices.
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Scenario 1

Figure 33: The result of WLT detection in scenario 1

In the first scenario all Active RFID Tags wereqad on the floor 3 m away from the camera device
in a room adjacent to the main hall (Figure 33yhticonditions were very good — illuminance at abou
400 Ix, smooth shades and not polished floor. Veg® lying about 5 — 10 cm from each other. The

results are shown in Table 4.

Table 4: Scenario 1 results

Overall measurement time 2724 ms

Video analysis processing time 378 ms

Positioning efficiency 100 %
Video parameters 1280x1024 48 FPS

Scenario 2

Figure 34: The result of Tags detection in scenario 2
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The second scenario was conducted in industriiingdre Active RFID Tags were placed at some
different distances form camera (Figure 34). Thehist devices were placed 15 m from camera.
llluminance at about 300 Ix was observed. The fireblem was revealed — with a high FPS coeffisient
light flickering (that came from PWM-modulated LE&mps) was observed, but it has not spoiled the

results. The results are listed in Table 5.

Table 5: Scenario 2 results

Overall measurement time 3106 ms

Video analysis processing timet03 ms

Pasitioning efficiency 100 %
Video parameters 1280x1024 50 FPS

Scenario 3

Figure 35: The result of Tags detection in scenario 3. Redes are bad LED detection due to

reflection phenomena

In this experiment Tags were placed at about 7om fcamera and very close to each other (3 — 7
cm). The floor was polished, thus reflection problappeared, which is illustrated in Figure 35. The

result of this scenario are shown in Table 6.
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Table 6: Scenario 3 results

Overall measurement time 4543 ms

Video analysis processing timel067 ms

Positioning efficiency 100 %
Video parameters 2048x2048 24 FPS

Scenario 4

Figure 36: The result of Tags detection in scenario 4

In this scenario the close to real industrial cass recreated in the test lab, so the camera was
placed as high as possible with wide view on tlemnecActive RFID Tags were placed randomly — in
long and short distance from camera and each ¢figure 36). Tag “e97d” was situated about 25 m

away from camera.The results are listed in Table 7.

Table 7: Scenario 4 results

Overall measurement time 2966 ms

Video analysis processing time315 ms

Positioning efficiency 100 %
Video parameters 1280x1024 48 FPS
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Scenario 5

Figure 37: The result of Tags detection in scenario 5

Table 8: Scenario 5 results

Overall measurement time 4052 ms

Video analysis processing time316 ms

Positioning efficiency 100 %
Video parameters 2048x2048 26 FPS

Scenario 6

Figure 38: The result of Tags detection in scenario 6

ARTEMIS-JU — GA n°332913 48 2016-01-05 16:08



Public Version COPCAMS Cognitive & Perceptive Caaser

In this experiment we placed Active RFID Tags indalistance from camera (about 20 m) and

close to each other (about 5 cm). The resultsistesllin Table 9.

Table 9: Scenario 6 results

Overall measurement time 3015 ms

Video analysis processing timet88 ms

Pasitioning efficiency 100 %
Video parameters 1280x1024 45 FPS

4.2.1.2 Tags localization in a real-world coordinate system

In order to examine the solution in terms on effectess and reliability, the experimental setup was
developed. Algorithms were implemented with us€&# programming language and OpenCV image
processing library to provide appropriate data-$yp&tructures and basic algorithms (for detailed
description of algorithms see deliverable D3.6)rgeaindustry hall in the Faculty of Electrical and
Control Engineering at Gdansk University of Teclogyl was used as the experimental environment.
The hall floorplan is shown in Figure 39. The reafur using such a location was recreating the real

factory conditions. During the experiment, someoemtered problems occurred:

< High overall brightness, which decreases contrestéen tags’ LED light and the scene
lighting.

* Industrial hall lighting based on PWM-modulated LEnps, which was generating some
flickering in frames’ brightness at high FPS seaasn

* Additional in-frame motion, which came from nornfiattory’s daytime activities.

« High-reflective floor and some metallic equipmemhich could mislead detection algorithm.

iy
2

Figure 39: The map of the whole factory hall with the aréaxperiment (green box) and

camera positions (red)
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In the area of experiment, 14 Active RFID Tags wefaced and localized with usage of

implemented algorithm. Two types of cameras weeslus

1. Point Grey GrassHopper3 USB3.0 1024x1024 with Bujilens,
2. Point Grey Flea3 USB3.0 1280x1024 with Fujinon lens

The location of each of cameras is marked by gdeg¢mn Figure 40.

*
*

N@

0000000000000 000000 000000 [ Y ‘ I L

Figure 40: Active RFID Tags reference positions (red) ancheeas (green)

In Figure 41, a view from Camera 1 is shown (withdigtortion correction). All tags were localized
and identified. In Figure 42, one can see the teqifltransformation from image to map coordinate

system. Calculated positions of tags are markegdylots.
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Figure 41: Camera 1: the result of computer vision algoritview without distortion correction)

Active RFID Tags are depicted by red dots and thiesr
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Figure 42: Camera 1: real-world positions of Active RFID Bagpmputed by distortion
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In Figure 43, a view from Camera 2 (without distortcorrection) is presented. All tags were
localized and identified. In Figure 44, resultstrainsformation from image to map coordinate system
are shown. Calculated positions of tags are mabgaed dots.

50:3be4 50:3BES

_SO:ERBEE

50 3808627 4AF

Figure 43: Camera 2: the result of computer vision algori{fwiew without distortion
correction). Active RFID Tags are depicted by retsdand their IDs
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Figure 44: Camera 2: real-world positions of Active RFID Bagomputed by distortion

compensation and perspective transform algorithm

As presented above, the algorithm has localizell ebéctive RFID Tags properly. Accuracy can

be estimated at about 5 cm. As expected, two ativek were observed:

» Accuracy perspective transformation decreases wiesnbject is further from camera.
e Lens distortion is significant at the corners aratgins of frames (despite of distortion

correction).

Taking it into account, the best accuracy is olbe@rin the near-middle of each frame. In this
demonstration, each tag was captured in both afdheeras, so some of them lie very close to thadra

borders.

4.2.1.3 Future work and conclusions
The performed experiments have confirmed thatdnepaiter vision subsystem can provide reliable
and efficient positioning procedure. Most of thelgems can be overcome by tuning the algorithm

parameters and setting up cameras properly. Howavew conclusions have been noticed.
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» Light source has to be chosen carefully. For examipwas observed, that the best color
for LED light source is red and the worst is bladoc when using the described cameras.
Furthermore, LEDs should provide wide light angtesome diffusors should be used to
ensure that light is radiated to the camera withugh strength.

» It is worth considering to use a lampshade to gi®viigh contrast between LED and
background.

* Camera’s lens calibration is mandatory, becaudertlzn can significantly spoil the result
especially in wide angles.

In the future it's planned to increase the expentakarea and use more camera devices. It's planned
to examine more light sources and camera lenses.tAk calibration procedure will be improved and

more algorithms are planned to be tested.

4.2.2 RFID switch measurements

Adding additional signal switching device to UHF IRFreader allows to attach more than two
antennas (one for signal receiving and one forstratting) to one reader. This solution allows to
implement a simple method of localization whictbv&sed on switching signal between antennas. With
signal switching device (Figure 45) one reader alayg replace many readers what is important due to
space saving and lower cost of implementation. Saelder can be visible by the system as several
separate virtual readers. For now, up to eightrenate are possible to be connected to the reader.

Figure 45: Switching signal module (designed in GUT)

If more than one antenna is in use, it is necedsadgtermine the time period in which the reader
is able to perform passive tag readout. Duringtihie tag has to be excited and its response hias to

received by UHF RFID reader. In Figure 46, simplifdiagram of passive RFID system [22].
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Figure 46: Simplified diagram of passive RFID system

It is important to determine minimum time period which the passive tag can be read. An
experiment was conducted and measured succeséoaltialated as the number of tag readouts divided

by the number of antenna switches) is present&ture 47. During the experiment RFID Reader was
set to continuous work and the antennas were sedtbly external interface.

Sucess ratio[%)]
105

100
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0 20 40 60 80 100 120 140 160 180 200
Reading period[ms]

Figure 47: UHF RFID Tag readouts success ratio(see texaxplanations)

As a result of the experiment, minimum time pefimdone antenna was determined as 120 ms. In
order to avoid switching of the antenna during cedigprocess and decrease readouts failures, switch

control has been implemented in UHF RFID readertsosontroller. Tests of new implementation are
In progress.

4.2.3 RFID ESPAR antenna

ESPAR (Electronically Steerable Parasitic ArrayRaidiators) is switched beam antenna. ESPAR
arrays are suitable for positioning systems wheterchination of the direction of the incoming signa
is required. ESPAR antenna has a simple construefith one active element surrounded by a defined

number of passive elements and provides 360° beatmnot in steps. Radiation characteristic switching
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is performed by SPST switches (ON/OFF) that hayedeide required load for the parasitic elements.
By adequate RF switches configuration obtainingr@ctional beam is possible [23].

The ESPAR antenna adapted to cooperate with UHIP Reader (868 MHz) was designed and
fabricated by GUT. In Figure 48 antenna realizaifopresented.

Figure 48: ESPAR antenna (designed in GUT) - top view

The radiation pattern and input impedance matcfandhree different configurations of ESPAR
antenna were measured (Figure 49, Figure 50). Tdasumements were made in the anechoic chamber
for three different configurations and the simuat were made for one configuration due to symmetry

of the antenna. Each of configurations consisfssefdirectors and seven reflectors.

In order to validate ESPAR antenna directivity,esalmeasurements were performed. In Figure 45,
exemplary areas of passive RFID tag readouts asepted. Each measurement was performed with

different height above ESPAR antenna.
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Figure 50: Antenna input impedance matching characteristics

The measurement’s results show that designed andfa@ured antenna has similar parameters.

Antenna is well matched for all free configurati@msl is able to cooperate with UHF RFID Reader.

In order to validate ESPAR antenna directivity saleeasurements were performed. In Figure 51
one can see exemplary areas of passive RFID talputsa Each measurement was performed with

different height above ESPAR antenna.
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Figure 51: Areas of passive RFID tag readouts mesured oretlifeights above ESPAR ante

(respectively 0.5 m, 1 m and 1.5 m), red dot indis@antenna position

The measurement’s results show that estimatioasdipe UHF RFID tag direction is possible when
using designed antenna. In future work performarfidecalization algorithms will be tested when wgin
UHF RFID reader with dedicated ESPAR antenna.

4.2.4 RF based localization

Three testbeds in three environments were preparender to measure how performance of

different RF localization algorithms is influencley change in RF signal propagation conditions.

Physical layer of the first testbed is based oarathoic chamber which is a part of the laboratory
available at the Faculty of Electronics, Telecomiations and Informatics, Gdansk University of
Technology. To confront anechoic chamber measurenweth the results obtained in commonly used
test sites, two more tesbeds were prepared. Q#atesite 1 (later called “office_1") contains aital
office room equipment including furniture and corgrs. On the floor the same measurement grid as
in the anechoic chamber was deployed and alsotaopanechoic chamber measurement equipment
(columns and wireless modules with batteries) wiserd. Office test site 2 (later called “office_&)
the third measurement environment, which has th& oiwllenging conditions for a localization sytem
with respect to RF signal propagation. It considtsvo rooms with 30 cm width wall between them

and high density of furnitures, computers and o#figipment not present in the office test site 1.

In figures below (Figure 52, Figure 53, Figure Bgure 55) and Table 10 results of localization

process (in the form of cumulative distribution étion, value 0.8 on y axis indicates that 80% of
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measurements have localization error lower thavahge indicated by x axis), performed with the use
of data gathered from four modules installed resyigcin prepared testbeds, are presented. In all
testbeds relative placement of reference modules rapasurement points were the same. For
localization purposes Multilateration [24], MLE [RSNCL [26] and fingerprinting [27] algorithms
(described in deliverable D3.6) were implementd lacdlization processes were performed.

multilateration

| me— testbed 3 - office_2
testbed 2 - office_1
| == testbed 1 - anechoic chamber |

1 1

0 0.5 1 1.5 2 25 3 3.5 4
error [m]

Figure 52: Localization results of multilateration algorithealculated in three testbeds
MLE

— testbed 3 - office_2
testbed 2 - office_1
testbed 1 - anechoic chamber |

1 1 1

0 0.5 1 1.5 2 25 3 35 4
error [m]

Figure 53: Localization results of MLE algorithm calculatedthree testbeds
WCL
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testbed 2 - office_1
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T T
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0 0.5 1 1.5 2 25 3 3.5 4
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Figure 54: Localization results of WCL algorithm calculatecthree testbeds
KNN =1
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Figure 55: Localization results of KNN = 1 algorithm calctéd in three testbeds
(fingerprinting map with 1 m spacing).
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The presented result shows how external environméoences results of positining that is based
on implemented algorithms and RSS measurementsngéhaf external conditions has different
influence on each of the algorithms. Mulatilatevativas an algorithm that is the most sensitiveard h
propagation conditions while WCL and fingerpintipgesented less change in accuracy. The obtined

results are listed in Table 10.

Table 10: Localization results obtained in three testbeds

anechoic chamber Office 1 Office 2
algorithm CDF value localization error [m]

0.5 0.68 1.85 2.23

Multilateration 0.8 1.10 >4 >4

0.9 1.25 3.80 >4
0.5 0.69 1.05 1.20
MLE 0.8 0.75 2.00 2.30
0.9 1.30 2.65 3.42
0.5 0.76 1.19 1.35
wCL 0.8 0.78 1.19 1.39
0.9 1.00 1.90 2.32
0.5 0.73 1.80 2.12
KNN=1 0.8 1.12 2.49 2.91
0.9 1.12 2.50 3.06

In future work more tests of RF localization algioms in different environments will be performed

to provide solutions that are best suited for Tegonstrator.

4.3 Augmented reality task (TED)

In addition to the setup of the COPCAMS computingral, the TED use-case involves additional
hardware, such as the Oculus Rift virtual realigadiset and the OVRvision stereo camera. The
communication with both elements has been testgohgpa@pecial attention to the latency, since it is
well known that latency not only degrades the wart@ality experience but also causes eye fatigde a

motion sickness.

A test application has been developed using Unityhich can show the stereo image from the
cameras in Oculus Rift virtual reality headset vatialable and legible text in an overlay (Figurg 56
This program is being used to determine the bestiguration for easy reading and user interface

distribution within the field of vision, a non-tial task due to Oculus DK1's low display resolution
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The preliminary experiments show that the setujeaels an acceptable user experience. However,
further tests will be needed, since at this polre bbject recognition middle-ware is still under

development and such layer will introduce additiatedays in the system.

Figure 56: Stereo display with direct video feed and ovelrtaixt

Regarding the image processing algorithms involuetie prototype, just the distortion correction
and basic prototypes of a key point based modethirag algorithm have been tested on the computing
board. None of them has been optimized nor paizdktlyet, so at this point no accurate estimation o

their processing times is available.

Although the bankruptcy of the Spanish leader Bdgd important delays, TED expects to provide
a parallelized version of the distortion correctaomd image rectification algorithms in the follogin
weeks that will be reported in D3.4. On the othandy the object detection algorithms are stillmn a
early stage and further efforts are needed, nagt tnimprove recognition rate, but also to improve
performance. In D4.4 the key point based model madcalgorithm is presented and some insights

about this ongoing work are provided.

4.4 Robot trackingtask (UC)

In WP3 some different works related with image pssing have been done, these labour is closely
related with the use case and system presente@ aDavhe following lines, it is going to be expladl
briefly how this image processing algorithms areently used on the different data flow of the syst
stage by stage The results of these experimentdsarencluded in deliverables 3.1, 3.2, 3.4, ariad 3
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Stage 1: Input data from the environment

The algorithm captures image from camera and toamsf the pair images into rectified and
undistorted images to compensate nonlinear effecthe lens, such as radial and tangential lens
distortion (Figure 57). Then, image quality is iroped by removing sensor noise (Figure 58), in order
to reduce to a minimum the mismatches betweerefhard right images.

.. -

=

) |

Figure 57: Rectified and undistorted images

oy

Figure 58: Noise removal from an image

Stage 2: Detect movement and markers

Use an image algorithm to detect the proposedearder markers (LED light + black contrasting

surface), which are in different light conditionsdeon different distances from the camera (Fig@e 5
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Figure 59: Markers detection
Stage 4: Frontal movement (stereo)

By the use of stereo cameras and epipolar geomgétythe 3D coordinates of the object to
characterize (Figure 60). It is necessary to apfyeo mapping or stereo matching, look for theesam
point in both images; and calculate projective pipelar geometry (Figure 61), by describing the
relationship between the image planes (Table 1fhetamera and the point.

Figure 61: Example of a bottle depth obtaining

Table 11: Relationship between the image planes

Left image u =546 Bottle’s depth
coordinates v =269
__ focal_lenght X baseline
Right image u=328 z= - - =37,13cm
disparity
coordinates vV =269
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5 Validation

5.1 Stateof theart at project start

This section describes the state of the art irfigle of smart cameras and embedded systems at
project start. It focuses on advanced manufactapuications examples with emphasis on the quality

control, RFID object positioning applications andginented Reality tasks.

5.1.1 Quality control tasks (KTOR, JSI)

In the research and development of industrial wissgstems, most applications are related to

inspection. There are five types of inspection:

a) inspection of surface quality,
b) inspection of dimensional quality,
¢) inspection of correct assembling (structurallip)a

d) inspection of accurate or correct operation (@penal quality).

Surface quality inspection includes inspectingdbgects for scratches, cracks, wear, and checking
surfaces for proper finish, roughness and texflinés type of inspection is used in textile, woodl an
metal industries by employing vision systems fasltfaletection and quality verification [7][8][9].
Inspection of dimensional quality includes checkimigether the dimensions of an object are within
specified tolerances or the objects have the cosaiegpe. More precisely, the vision systems check
geometrical characteristics of objects, such usedsions, shape, positioning, orientation, alignment
roundness and corners in two or three dimensiotmiles of inspection of geometrical charactesstic
are reported in [10][11][12]. Structural qualitysjpection includes checking for missing components,
e.g., screws, rivets, etc., on assembled partisemking for the presence of foreign or extra olsjeelg.,
leaves, little sticks, dust, etc. Examples of strad quality inspection are presented in [13][15]]
Inspection of operational quality consists of vieafion of correct or accurate operation of thgpetted

products according to the manufacturing stand&xamples are described in [16][17].

There exist also all-in-one embedded machine vismntions that integrate image capture and
image processing together with built-in softwaretovide quality control and improved productivity
for manufacturing operations [18]. Such solutioas be applied across a wide range of industrids suc

us agriculture [10], automotive [19], and electosni20].

On the market, we can find several manufactureasdffer smart camera solutions for industrial

usage. The companies Keyence, Cognex, Nationalumshts and Sick dominate the market of
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commercially available smart cameras in terms otiware solutions with implemented dedicated
software. However, the majority of these solutiars® its own hardware, which is based on the
embedded x86 PC, with integrated commercial aviail&PUs (e.g. INTEL Atom x86). Consequently,

these smart cameras are not offering the statkes&itt performance regarding the computational

performances and power consumption.

The company XIMEA was the only company found at $teet of the COPCAMS project (April
2013), which was offering a commercial industrialast camera embedded vision system, with both
CPU and GPU cores on a single die. The companynsléhat their smart camera CURRERA-G by
using GPU cores can deliver 90 GFLOPS of procesgower. Furthermore, they offer application
programming interfaces (APIs) for 30 of the mosmomon image-processing libraries including
OpenCV.

At the start of the COPCAMS project, all implemeahtmachine vision solutions in KTOR
production facilities were PC-based. KTOR is usisgpwn computer vision software called Kolektor
Imaging Software (KIS), which is essentially a feamork that combines specialized machine vision
algorithms (operators) frequently used in commuitatoduction. In addition, in KTOR production for

non-complex machine vision inspections, smart cam&om companies like COGNEX are used.

The next generation of smart camera systems ingudhe embedded platforms from the
COPCAMS project will enable the deployment of sigaintly improved computer vision algorithms
enabling more accurate real-time inspection of pot&l Moreover, the network of cameras will enable
improved inspection of products by taking into aeuothe sequential nature of a manufacturing
processes, and make it possible to analyze ther)Ygdeipendencies of various steps of the process and
the impact of the steps on the quality of the fpralduct. Implementation of the proposed qualitytod
system will result in higher quality of productdancreased productivity. In addition, it will begsible

to adapt the developed system for deployment oer @foduction lines during or after the project.

5.1.2 Object positioning task (GUT)

During the research, it was observed that mogte&pplications and systems, which are considered
as “intelligent surveillance systems” deliver commset of functionalities. The main goal of intedlig
video surveillance is to extract useful informatfoom video stream collected by cameras deployed in
factories, at airports or any other place wherewidurveillance is being used. Intelligent suraeitie

systems deliver possibility of [28][29]:
1. Multi-camera calibration

Mapping different camera views to a single coortdirgystem.
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2. Object re-identification
Matching two image regions observed in differemheea views and recognize whether they belong

to the same object or not.

3. Multi-camera tracking

Tracking object across the field of view of diffeteamera.

4. Multi-camera activity analysis
Recognition of activities of different categoriggdadetection of abnormal activities in a large area

by fusing information from multiple camera views.

Intelligent surveillance systems are used in midtpaces, where real-time alerts and the abitity t
search specific items, are based on their unigaeacteristic. Thus intelligent surveillance systeres
popular in public places, such as train statioimppés, crowded streets and, on the other hanth su
systems are used in industry. When considering etaidady device-embedded systems, it is worth to

mention:

I0Image released the 10lcam xptz100dn, an IP plaand zoom (PTZ) camera with autonomous
tracking capabilities. Intelligent 10Ilcam is dayht, all-weather camera with embedded built-in
analytics that delivers cost-effective intelligexafution. I0OIcam is able to automatically detecack

objects such as vehicles, people etc. [30].

Agent Video Intelligence (Agent Vi) has completér tintegration with Axis Communications'
camera application platform and it's available asembedded solution. Agent Vi performs real-time
analysis of the video stream captured by camerah@&trbasis it identifies and generates alertsiser
predefined events related to people, vehicles dnekcts. Video-search capabilities enable rapid and
effective retrieval, analysis and presentation ggc#fic Video segments, events and data from vast

amounts of recorded video [31].

Bosch IVA 4.0 is the security assistant systemiridoor and outdoor use. IVA 4.0 detects, tracks
and analyzes moving objects while suppressing uteslamlarms from spurious sources in the image.
IVA 4.0 is an embedded system prepared in DinigrEtereme IP, FlexiDome IP, and AutoDome IP

cameras [32]. The system
» detects idle/removed object, loitering, and liessing,
» displays/detects object trajectories, speedctime, heads and color,

» optical flow detection of objects in a surveikk@nscened
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» creates metadata for forensic searching of rexbvitleo.

It is observed that for industrial purposes ingehit surveillance video systems are integrated with
RFID systems (1, 2, 3, 4). One of the first deplewtrof tracking system for industrial needs, based
RFID linked with CCTV, took place in 2006. Sony Bpe (1) installed a monitoring system that helped
reduce theft of warehouse goods, but also incretisedfficiency of Sony’s shipping processes. The
company installed the system at its largest Eunoplestribution warehouse in Tilburg, the Netherland
[33].

Nox solution (2), delivered by SimplyRFID, integeatvideo surveillance system with passive RFID
tags. Nox searches video by location, camera, tand,RFID-triggered events. Video can be located
when an RFID tagged item was seen in the videonvthe item missing, when an item was checked
infout, or when an item caused an alarm. Nox pléyso and shows all RFID tagged items in-view at
time of the video being recorded, by each individtaane of the video. Video can be played forwards,

backwards and in-real-time [34].

GuardRFID delivers software applications, suchai&tiard™ Infant Security (3), integrated with
Active RFID platform. Security and access contgdtems are enhanced by presenting a live video
stream from a CCTV camera placed at the locatisn@ated with an alarm or warning event within a
system, as well as providing video images of atgtivi that location immediately prior to the evehe
alert (event) generated by the RFID tag is supposiiéh a real-time video image and archived records
to become an integral part of patient monitoringtdntaneous visibility of such activity allows $taf
immediately respond to the event, saving preciaug.tAll such video streams are captured and

archived for subsequent review, if ever requires).[3

Within the scope of the project the two companialirieier and initPRO (4) work on the integration
of RFID data into video images for tracking flowggods in warehouse. Data which are transmitted by
the RFID tag such as date, time or serial numbebeantegrated into the video image. For this psep
the RFID reader sends data to the Dallmeier recaideEthernet. The data is then displayed withim t

management software PView, either in or next tovideo image [36].

Intelligent surveillance video integrated with RFi€chnology is not commonly used solution in
industry. On the other hand, the Sony case shaatsttban reduce financial losses as well as imgprov
operational efficiency. RFID technology in the meted examples is used to track objects and assets,
based on passive tags. COPCAMS uses active RFfidotade close to real-time information about
assets’ localization. Integration of optical methadf object tracking with active and passive RFID
tracking allows computer vision algorithms to idgnand locate tracked assets and gives an oppgtrtun
to increase the reliability and accuracy of the Mhpositioning system, especially in industrial

environments where localized objects cannot beepies the line of sight. What also makes a diffiese
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is that in the presented examples (1, 2, 3, 4)ga®ed localization, visual and radio data are caite

in the computational server. COPCAMS allows towd®lithe same value, based on a distributed system
of Smart Cameras with RF sensing capabilities, e/@ormation is processed on the device. Such an
approach allows to scale the surveillance systesirbgly adding new Smart Cameras with RF sensing
capabilities without investing in increase of exigtcomputing power infrastructure. Additionallys a
Smart Cameras with RF sensing capabilities can erad@, with increasing number of devices the
overall positioning performance can increase (ddipgnon devices placement and environmental
conditions). Integration of camera with efficienBoC allows for removal of band consuming, time and
energy inefficient process of encoding, transfer decoding video data, which is necessary when high
quality video data has to be processed on an altsenver. Combination of possibilities of videaan
various radio frequency techniques allows for adjiesit of Smart Camera with RF sensing capabilities

system to end-user needs.

5.1.3 Augmented reality task (TED)

There are few experiments exploring the use of anged reality on industrial applications, but to
the best of our knowledge no commercial developmard available. As the main limitation, all depend
on heavy computing equipment, making them unpralctar field deployment. An example proposal

can be found dittp://monet.cs.columbia.edu/projects/armar/

5.1.4 Robot tracking task (UC)

In the recent years, there has been a growingeisitén the systems and products related to the
location of objects in three dimensions (3D). Taetars covering this technology are very broadhsuc

as robotics, medicine and games, among others.

To know the precise position of an individual, gystems may be based on the use of cameras,
optical sensors, accelerometers, gyroscopes, GBIndhe event that vision systems are used, it i
necessary to perform a pre-processing of the regianterest where the individual is located using
imaging algorithms that detect corners, edgesfereace markers; then, with these data is posgible

obtain the real 3D coordinates of the environment.

One of the problems that have been found in otlueliess [38] when using markers, is light in the
environment where the images will be taken. Thafgdb be detected in the scene may be lost because
of the darkness. This limits the applications trs# this system indoors. Furthermore, the userdfast
enhancement algorithms and specific markers storeml database is required, which substantially
increases the computing time of these systemdditian, it limits significantly the distance betere
printed markers and the system user, unless ggsiarge enough to be captured by the image senso

To solve this problem, light markers working in tisible or infrared spectrum can be used, such as
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light emitting diodes or lasers. In some cases, [8#fjt sources with varying luminance or pulseghti
have been proposed which can cause synchronizatiores. Still, the use of luminous markers can
pose problems, particularly in environments whégletlsources with much higher luminance than the
marker itself (in the worst case, sunlight) or sasremitting radiation in the same direction aesent.

In such situations, the image sensor is not abtéfterentiate one light source from another, swilt
force, as was previously the case, to use thisitdofgy in bright environments without big light soas

in it. Therefore it will be necessary to introdwement positioning systems that prevent light aoots

affecting an environment so significantly.

In the article [37] it is proposed to incorporatéared luminous markers on a tape on the head user
To do this, they put on the scene two independemiecas, which require a synchronization process to
make the shot simultaneously, located at a distagoel to the length of the wall of the room where
tested. The algorithm used to make an estimatleeoposition is based on stereo correspondence. One
of the drawbacks is that it cannot be implementedhifigmented reality systems or simulated, because
the cameras do not show what the user sees, bégithgsrestricted to indoor environments with lieait

dimensions.

Other studies as "Tracking of user position an@rddtion by stereo measurement of infrared
markers and orientation sensing" (M. Maeda, ePabceedings of the 8th International Symposium on
Wearable Computers (ISWC'04), 2004) raises the@usgrared markers located on the wall of a room,
to locate the user. Specifically, they proposeuse of two types of markers: actives and passives.
active markers are formed by a set of three inff&feDs and a signal transmitter that sends data fro
its actual position to a decoder that the useliesrso once the detected know their absoluteipnosit
The passive markers are only one source of infrigid, from which it obtains the relative user
position. In addition to relying on receiving sigmdrom active markers, it calculates the relative
distance from stereo vision. Using this technigssyccurred in the cases discussed above, itikted

to indoor use.

There are other methods that do not require dins@in of one or more cameras with reference
markers for locating and tracking individuals. TRE techniques involve measuring distances, from
static or moving objects, by emitting electromagneulses that are reflected on a receptor. These
electromagnetic waves are reflected when significelmanges in atomic density between the
environment and the object, so that works partityilaell in cases of conductive materials (metals).
They are able to detect objects at greater distathes other systems based on light or sound; hewev
they are quite sensitive to interference or ndtse.also difficult to measure objects locatedliffierent
distances from each other to the transmitter, methe pulse frequency will vary (slower the farthe
and vice versa). However, there are experimentalies which are able to demonstrate its use to

estimate the user location with a high level ofumacy.

ARTEMIS-JU — GA n°332913 69 2016-01-05 16:08



Public Version COPCAMS Cognitive & Perceptive Caaser

Another example of existing solutions are the LID#y®tems, which calculate tbestance through
the time taken for a light pulse to be reflectecharobject or surface; using a device with a pulaser
such as a light emitter and a photodetector asepter of the reflected light. The advantage o&¢he
systems is the accuracy achieved over large dss(using lasers with wavelength > 1000 nm) and the
possibility of mapping large area lands by scanright pulses. The disadvantages are that it is
necessary to analyze and process each point, andifficulty of automatically reconstruct three-

dimensional images.

5.2 Targetsat project end

5.2.1 Quality control tasks (KTOR, JSI)

The selected field tests will be implemented in KX €@cilities. Field tests will be installed at the
production line at different production phases I graphite commutator. Dedicated software and
hardware (automatization, manipulation) for eaeldftest will be developed. The overall objectife o
quality control tasks is to develop applicationsdaality control of the specific production proses,
which will be able to detect defects on the comitrmusaduring the production. In order to validate th
solutions developed during the COPCAMS project,fible tests will be running for a longer period
(e.g. 3 months).

5.2.1.1 Objectives and goals
Objectives and goals for a quality control tasks loa divided to COPCAMS project objectives and

applications/field tests specific objectives.
COPCAMS project:

* Cost reduction of the machine vision systems in gamison to the current PC-based
systems used in KTOR (less expensive hardware,dddi@nal licensing needed, and
consequently enabling implementation of the quatipntrol in every phase of the
production process)

* Reduced power consumption for automated visualeictigns by 50% (replacement of
currently used PC-based machine vision systemsth&lCOPCAMS solutions)

» Shortening the development cycles of complex machision projects by 15 % (due to the
reusable hardware and the methodology developedgdilre project)

» Self-adaptivity (learning on newly collected data)
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Application specific objectives:

» Achieving of acceptable classification accuraciesoading to the prescribed tolerances
(confusion matrix of the deployed classificationdal)
* Reduction of product rejection rate, resultinganiags in material and energy

» Higher quality of manufactured products

5.2.1.2 Evaluation and evaluation strategy
Each objective will be measured and evaluated dutie implementation of the field tests. From
the application point of view, the main successtedon for acceptance of the developed

algorithm/application will be quality-control acaay.

5.2.2 Object positioning task

The system will be installed and tested in KTORlitgplaced in Idrija, Slovenia. Smart Cameras
with RF sensing capabilities and other sensors belideployed. It is planned to conduct a series of
testing sessions. During the tests, functionalibéssystem of Smart Cameras with RF sensing
capabilities will be validated, while the systenilrovide close to real-time information abouteiss

positions.

5.2.2.1 Objectives and goals
Objectives and goals for a quality control tasks loa divided to COPCAMS project objectives and

applications/field tests specific objectives.
COPCAMS project objectives:

Use of embedded computing platform (TI KeyStona2he system that is being developed allows
to eliminate the bandwidth, energy and time cosbeiated to process of encoding, transmission and
decoding of video data that is necessary if videta from IP cameras is processed on central server

like in systems that were available at the stathefproject.
Application specific objectives:

During the field tests, the system will provide s#ao real-time localization of predefined assets.

This information will be provided to KTOR facilitgmployees.
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5.2.2.2 Evaluation and evaluation strategy

COPCAMS project objectives:

The amount of data that is sent from camera teéineer that is storing calculated positions will be
measured in two scenarios. For each of the scentimosame combinations of video parameters, such
as resolution and FPS, are planned to be testéuk first scenario, after triggering positionin@gess,
the IP camera will send the video data to the sewlgere Computer Vison algorithms will be
implemented and the position of active RFID tag W calculated. The process will be repeated for
each configuration and after each of procedureatheunt of transferred data will be determined. In
the second scenario, after triggering the postigmrocess, the smart camera will process videm dat
and send information about the calculated positattive RFID tag to the server. As before, the anto
of transferred data will be determined for eachfigomation. After the measurements the amount of

transferred data for each configuration in botmacdes will be compared.
Application specific objectives:

The measure of success will be the amount of seftdislocalized objects with satisfying accuracy
and delay of the whole localization process. Ty of the system will be dependent on quality o
calibration, number and placement of Smart Caméita RF sensing capabilities devices that will be
deployed in T5.2 demonstrator. The target avel@gadization error is expected to be less thanfdm
measurements in the most challenging case whetaghthat is expected to be localized is not in the
line of sight of any of the cameras and only RFoiinfation is available. Moreover, KTOR facility

employees will provide the overall impression déteyn’s performance.

The main strategy of system evaluation will be tmrameasurements of objects in predefined
locations. Due to the fact that measurement of nahjgcts at the same time and comparing with
simultaneously gathered real positions measureisdtifficult, the proposed strategy will be applied
Objects will be placed in predefined locations gmeimeasurement process will be triggered. After th
finish of each localization process, the estimadbedtion will be compared with real location ane th
localization error will be calculated. Also for eydocalization process, the delay between locabra

trigger and delivery of result will be measured.
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5.2.3 Augmented reality task (TED)

The objectives of the virtual reality demonstratan be divided in two categories. On the one hand

we have the objectives from the technological pofntiew:

Take full advantage of HW

COPCAMS provides a low power, reduced cost, higifopmance image processing
platform that leverages the capabilities of théuwal reality application being developed by
TED. The implementation of multi CPU and GPU op#ed algorithms will allow to take
full advantage of the hardware capabilities.

Portability

Although external causes have forced TED to leaeeSTORM platform and move to a
non-portable platform, portability is still a kegdtor for TED. The use of COPCAMS

technologies ensures an easy path towards fututabpe solutions.

On the other hand we have the objectives from fability point of view:

Latency of the video-feed

Low latency of the video-feed is needed to acheewertual reality experience. Moderate
latency causes eye fatigue and motion sickness Higncy dramatically degrades the
virtual reality experience making the system unlesalED expects to achieve the required
low latency thanks to the COPCAMS technologies.

Latency of the object recognition middle-ware

Object recognition requires intensive processirgyraight affect the video-feed latency in
several ways. It seems reasonable to use lessdpenesecond for object recognition than
for the video-feed. The final application must tatkés into account, decouple both
elements, and find an equilibrated balance thatpgs usability.

Overlay quality

The user interface should be intuitive, providexciaformation and be easy to interact with.
Object recognition success

The recognition of objects has to be reliable arwide a low rate of false positives and

false negatives.

Further details about objectives and field tedtsted to the augmented reality demonstrator can be
found in D1.4.
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6 Current state of the demonstrator

6.1.1 Quality control tasks (KTOR, JSI)

Dimensional measurements task

A dedicated machine vision algorithm has been pdxehe Nvidia Jetson platform and tested on
the offline captured images. To enable an opematdhe production line to observe results of thveent
inspection, a GUI application was built. The iHitiasults (detection rate) obtained in the laboatwe
satisfactory, however the final evaluation of thecess criteria will be possible after the impletagan
of the system on the KTOR production line. Impletagion of the system will start in M31 and will be
finished before the end of M36.

Quality inspection of copper-graphite soldering

Basic machine vision algorithms for detection & tiefects in the soldering process were ported to
the Nvidia Jetson platform. Tests on the largeuaed dataset of images were performed. Some ptoduc
defects are detected very successfully, while s(@aaécit of solder) will need additional tuning. In
addition, a lot of effort is currently investeddnilding of the mechanical manipulator, which weitlable
implementation of the system on the production. lingplementation of the system will start in M32
and will be finished before the end of M36.

Measurement of the commutator mounting holes roughness

Machine vision, machine learning and optimizatidgoathms were ported to the Nvidia Jetson
platform (OpenCV and CUDA). The first version okthpplication for roughness measurement was
built and tested on the offline captured datasdtnafges. In order to improve the assessment of the
mounting hole roughness, some additional testdwipperformed (optimization of the machine learning
algorithm parameters). Implementation of the systenthe production line will be performed within

the following months.

6.1.2 Object positioning task (GUT)

Early prototypes of all system components describe8lection 3.2 (Object positioning task) are
developed or are very close to their final versidore detailed information about the actual stditihe
algorithms and hardware are available in delivesabl3.6 and D4.4. The first demonstration of atyear
system prototype that will show the basic systentfionality is planned for the second COPCAMS

review in Gdansk.
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6.1.3 Augmented reality task (TED)

The cameras and the virtual reality headset us#tkiprototype have been integrated and tested.

A parallelized version of the distortion correctiand image rectification algorithms is ongoing. It

is expected to be finalized in the following weelksl reported in D3.4.

The object detection algorithms still require fanthefinement. The optimization of the algorithms
to the COPCAMS platform will begin once their deomhent is finalized.

7 Conclusion

In this deliverable, we summarized the demonstnatasks and provided specifications in advanced
manufacturing applications in the COPCAMS projaste provided a detailed description of the
demonstration tasks that will be implemented durihg project. Demonstration tasks form four
different areas as specified (field tests and pyp® demonstrations): quality control tasks, RFID

tracking task, augmented reality task and robakirg task.

Each use case (field test or prototype) will vakdand demonstrate the technologies developed
during the project. The methodology, architecture iitial results of experiments are presentdtiis
deliverable, however the detailed analysis of tredieation results will be presented in deliverdb&e5
Advanced Manufacturing Applications Repatthe end of the project and will be based orstleeess

criteria defined in the document D1.4.
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