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1 Introduction 

Vision systems are present in the manufacturing applications for at least two decades. First machine 

vision systems were, with respect to the current applications, quite simple, offering limited functionality. 

Gradually, with increasing computational power, machine vision systems became more complex. 

Today’s machine vision systems in manufacturing environments mostly consist of fixed function, 

configurable cameras that stream video to PC-based (and in some cases small embedded) gateways. 

The Cognitive and Perceptive Camera Systems (COPCAMS) project explores a new approach to 

the machine vision system in manufacturing applications. In contrast to the “camera-PC” approach, 

COPCAMS project will use many-core programmable accelerator platforms to capture and process 

images and other signals and extract the relevant information. Since the processing will be done locally 

on the embedded platform, only extracted information will be transmitted over the network. This will 

reduce the amount of the information sent over the network and enable implementing distributed 

machine vision applications. 

The role of D5.2 Advanced Manufacturing Applications Specification document is to demonstrate 

the tools and methodologies developed during the COPCAMS project and to specify the demonstration 

activities (field tests and prototype demonstrations) in advanced manufacturing applications. Individual 

field tests described in this document will be evaluated based on the success criteria defined in the 

document D1.4 – Summary of Use Cases and Field Test Definition. Tools developed in WP2 and 

described in D2.4 will be used during the development, implementation and optimization of the demo 

applications. The algorithms described in WP3 (D3.6), will be implemented to demonstrate the tasks 

presented in this document. T5.2 has strong connection also with the WP4, where the middleware of the 

platforms used in advanced manufacturing demo is described. Initially the STHORM platform was 

intended to be used for all demonstrations in the Advanced Manufacturing Applications. However, due 

to the delay in the availability of this platform demonstrators decided to use also alternative platforms. 

The document is further organized as follows. The demonstration task from the field of the quality 

control, object positioning, augmented reality and robot tracking are described in Section 2. Section 3 

describes the proposed system architecture and methodology used in the design and evaluation of the 

field tests and demonstrations. The results of the preliminary experiments, performed in the laboratories, 

are presented in Section 4. In Section 5, the overview of the COPCAMS solutions in advanced 

manufacturing applications is presented, by comparing state of the art at the project start and the 

expected progress during the project. Section 6 summarizes the current state of the demonstrators and 

their tasks. Finally, Section 7 concludes this deliverable. 
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2 Demonstrator tasks 

This section describes the field tests in Advanced Manufacturing Applications, which are defined in 

D1.4 – Summary of Use Cases and Field Test Definition document. The objective of Advanced 

Manufacturing Applications field tests is to show how the technologies developed during the 

COPCAMS project can improve the manufacturing process and implement solutions which are beyond 

the state of the art. 

The demonstrator tasks in Advanced Manufacturing Applications are divided into four areas: 

• Quality control tasks, 

• Object positioning task, 

• Augmented Reality (AR) task, 

• Robot tracking task. 

The demo in Advanced Manufacturing Applications will include four field tests and two prototype 

use cases. The field tests (quality control task and object positioning task) will be performed in a real-

world manufacturing process at the KTOR production facilities. The AR task and robot tracking task 

will be demonstrated as an application prototype. 

2.1 Quality control tasks (KTOR, JSI) 

The aim of the quality control tasks is to develop and implement advanced machine-vision based 

quality control systems. Selected use cases will validate COPCAMS solution on the commutator 

production line at various stages of the production process and will partially substitute manual quality 

control. All three use cases are from the field of the product quality control and share same use-case 

diagram. The use-case diagram of the quality control tasks is shown in Figure 1. 

 

: Quality control tasks use-case diagram 
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Each quality control task will include the following actors: 

• Production line 

• Camera / COPCAMS platform 

• Semiproducts 

2.1.1 Dimensional measurements of the copper base in graphite 

commutator production 

Graphite commutator (Figure 2) is assembled from a copper base and a graphite body. In the initial 

production phase, the copper base is produced from a copper strip in the process of cold forming. The 

copper base has a relatively complex shape and many tolerances have to be checked before the 

subsequent phases of commutator production. The production cycle of the copper base is about 1 second 

per piece. The objective of the demo is to implement dimensional quality control of the copper base, 

based on predefined tolerances within the current production cycle.    

 

: Graphite commutator 

The copper base image captured with backlight illumination and marked dimensions, which have to 

be checked, is shown in Figure 3. Since the copper base contains eight symmetrically shaped anchors, 

every dimension has to be checked multiple times. For clearer representation, in Figure 3 each dimension 

is marked only once. The description of the dimensions with tolerances is listed in Table 1. 

 

: Captured image of the copper base with marked critical dimensions 

 

copper base 

graphite body 

d

a1 

α
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Dimension  

(label in Figure 3) 

Tolerances 

 

Description 

d1 
9.5 ± 0.25 mm 

max. difference between segment pairs < 0.3 mm 

distance between two 

opposite anchors 

α1 45° ± 1° 
angle between two 

adjacent anchors 

a1 acceptable / unacceptable 
area without the copper 

inclusions 

 

The first dimension which has to be measured is the distance between the two opposite anchors. 

This dimension is crucial, since inadequate dimension results in improper alignment of the copper base 

with the graphite body. This can lead to a mechanical fault of the commutator. The copper base for the 

considered type of commutator consists of eight identical anchors. As shown in Figure 3 this dimension 

is measured between the two opposite anchors. Beside the absolute value of the dimension, also the 

maximal difference between the anchor pairs is important. 

The next dimension, which has to be checked, is the angle between the adjacent anchors. Like the 

distance between the two opposite anchors, the angle between the anchors affects the alignment of the 

copper base with the graphite body, and consequently the mechanical strength of the produced 

commutator.  

The last measurement that has to be verified is the presence of the copper inclusions in the area 

between the two adjacent anchors on the copper base. The copper base is produced in a process of cold 

forming. Since the copper base has a complex shape, unremoved copper may remain on the copper base. 

As a result, two adjacent anchors on the produced commutator can be short-circuited. 

Performance of this use-case will be evaluated based on the following success criteria: 

• accuracy of measurements/detections, 

• software development and deployment cost, 

• power consumption compared to currently used PC-based machine vision system. 
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2.1.2 Quality inspection of copper-graphite soldering  

One of the phases of graphite commutator production is soldering of metalized graphite body 

(Figure 4), representing the brush track to the copper base. The process of soldering is one of the most 

critical processes in commutator production, since the reliability of the end user application directly 

depends on the strength of the copper-graphite joint. In the commutator production at KTOR, there is 

currently no automated quality control of the soldering process and all the commutators are inspected 

manually. 

 

: Graphite disc 

To overcome the drawbacks of the manual inspection, we aim to design an automated quality control 

procedure for graphite commutator soldering process. Soldering process in commutator production 

consists of several phases. First, the right quantity of the soldering paste has to be applied to the specific 

area of the metalized graphite disc. Next, the graphite disc and the copper base are appropriately 

positioned and oriented, and then joined together. After both components have been joined, they are 

heated and a soldered joint is formed. Finally, the semiproduct is released to the next production phase 

on the commutator production line. The process of soldering takes about 5 seconds per piece. 

During the soldering phase, four types of defects may occur: 

1. metallization defect, i.e., there are visible defects on the metallization layer of the graphite body, 

2. excess of solder, i.e., solder is split over the copper base, 

3. deficit of solder, i.e., graphite body and the copper base are not properly soldered together, 

4. disorientation, i.e., the copper part is not appropriately oriented with respect to the graphite part. 

Each type of defect can occur only on a specific part of the commutator. Consequently, different 

types of defects can be identified on different segments of the commutator. 

Defects, which occur during the soldering process, cannot be directly measured. Therefore, a domain 

expert has to manually classify a particular commutator into the appropriate quality class, i.e., define the 

type of defect.   

 

Performance of this use-case will be evaluated based on the following success criteria: 



Public Version COPCAMS Cognitive & Perceptive Cameras 

ARTEMIS-JU – GA n°332913 10 2016-01-05 16:08 

• accuracy, confusion matrix of the deployed algorithm, 

• software development and deployment cost, 

• power consumption compared to currently used PC-based machine vision system. 

2.1.3 Measurement of the commutator mounting holes roughness  

Dimension and roughness of the mounting hole are two of the most critical characteristics of a 

commutator. When the commutator is mounted on an electrical motor shaft, a predefined force has to 

be achieved. This force depends on both characteristics – dimension and roughness of the mounting 

hole. In the demo, we will address the problem of measuring the roughness of the mounting hole (Figure 

5) using machine vision. Usually, for roughness measurements, contact methods are used, but these 

methods tend to be very sensitive and are not suitable for on-line roughness measurement in production. 

On the market, there are also non-contact methods for roughness measurements available, such as 

scanning electron microscopy (SEM) and atomic force microscopy (AFM). These methods can provide 

very accurate measurements, but since they require preparation of the testing samples and are very 

sensitive to vibrations, they are not suitable for on-line roughness measurements. The objective of the 

demo is to develop and implement a machine vision based method for on-line, noncontact roughness 

measurement. Processing time of the commutator mounting hole is about 3 seconds per piece (including 

mechanical manipulation).  

 

: Graphite commutator with indicated mounting hole 

A roughness value can be measured on a profile (line) or on a surface (area). There are different 

profile parameters available, which define how roughness is calculated from the measurements. The 

most common parameters are arithmetical mean deviation of the roughness profile (Ra) and maximum 

height of the roughness profile (Rz). The considered commutator mounting hole roughness is specified 

by the Rz parameter. The measured roughness value for this commutator should be less than 16 µm. The 

principle of calculating the Rz parameter is shown in Figure 6.  

mounting hole 
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: Calculation of the Rz profile parameter 

The final treatment of the commutator mounting hole is done in the process of turning (Figure 7). 

In order to achieve the required quality of the mounting hole treatment, several parameters have to be 

set. These parameters are feed rate of the lathe tool, rotational speed of the semiproduct, etc. After these 

parameters for the specific type of commutator are determined, they are fixed and are not varied during 

the production process. The most significant factor that influences the hole roughness is the lathe tool 

wear. With the machine vision system that will measure the commutator hole roughness on-line, it will 

be also possible to monitor the wear of the lathe tool.  

 

: The final treatment of the commutator mounting hole  

Performance of this use-case will be evaluated based on the following success criteria: 

• accuracy, confusion matrix of the deployed algorithm, 

• software development and deployment cost, 

• power consumption compared to currently used PC-based machine vision system. 
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2.2 Object positioning in a cooperative multi-camera system with RF 

sensing capabilities (GUT) 

Objective: In production facilities, information about assets position plays a key role in production 

efficiency. Real time or close-to real time position of assets, important in production process, may be 

used to limit the number of tools used, to decrease the time of tasks that have to be performed during 

production process or to improve the quality of the management process. In KTOR production facilities, 

RFID tags are to be attached to different assets (e.g. mobile tool cabinets, trolleys, plates, etc.), so they 

can easily be located in the production facility. The installed system of smart cameras with RF sensing 

capabilities will process the information gathered from RFID tags (active and/or passive) within the 

facility to determine the tags’ position, and also to provide overviews and statistics of assets usage that 

can be used to help factory managers to optimize the production process. The objective of this use case 

is to test and assess the developed system of smart cameras having capability of RF signals sensing to 

support the production process. The use-case diagram of the quality control tasks is shown in Figure 8. 

 

 

: Object positioning system  of Smart Cameras with RF sensing capabilities use-case 

diagram 

 

Actors:  

• Smart Cameras with RF sensing capabilities  

• IP camera (optional, may not be present in the T5.2 demonstrator) 

• Facility employee (e.g. facility manager, facility worker, etc.) 
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• Third party software (e.g. ERP, ERM, etc.) 

Preconditions:  

The system is correctly installed covering the area of interest (the system is using one or more 

cameras installed across the facility to detect assets, such as mobile tool cabinets, trolleys, plates , etc. 

Post-conditions: 

Success: Assets are correctly positioned/tracked providing the close to real-time information to 

facility manager/worker. 

Failure: System is not able to provide assets localization and the possible reason is logged on sever. 

2.3 Augmented reality task (TED) 

This experiment explores the use of augmented reality (AR) as an aid in the execution of 

maintenance and repair works on machinery, computers hardware, electric equipment and other similar 

scenarios.   

The main objectives of AR applied to maintenance and repair tasks is to improve productivity and 

to enable lower skilled technicians to perform specialized tasks. It is an area still at very early stage with 

only few pilot projects on the field and no real industrial deployment yet. Head-worn, motion-tracked 

displays augment the user’s physical view of the system with information such as object labeling, guided 

steps, real time diagnostic data, and safety warnings. The virtualization of the user and maintenance 

environment allows off-site collaborators to monitor and assist with repairs. Additionally, the integration 

of real-world knowledge bases with detailed 3D models provides opportunities to use the system as a 

maintenance simulator/training tool. 

All existing AR related trials are based on heavy computing equipment that limits the usability of 

the AR solutions. Indeed, many field applications only make sense if the equipment can be easily ported 

by the user (e.g. in army vehicles deployed in the field, remote oil rigs, etc.).  Any efforts pushing this 

kind of extremely resource hungry applications towards more portable solutions (like, for instance, the 

COPCAMs platform) will facilitate future adoption by the industry. 

The demonstrator under development will show the potential of this technology, especially in what 

involves the interaction between the image capture and analysis and the synthetic image generation, 

image blending and 3D display. 

The application focuses on the optimization of the different building blocks, with special emphasis 

on the implementation of all image processing and analysis tasks on the GPU processor using standard 
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OpenCL. The value of this exercise lays in its direct portability to a range of embedded platforms that 

will facilitate the feasibility of future portable AR solutions by pushing the processing to the camera. 

This development will leverage the results of task T3.1 (Image processing algorithms). 

The project will show the potential of AR as a human-machine interface and, moreover, the potential 

of AR to convey context dependent computer generated information to the user via the 3D immersive 

display. 

The COPCAMS based system is composed of a virtual reality headset (Oculus Rift display) 

equipped with a stereo camera (Figure 9). The camera will stream the images to the headset allowing 

the user to navigate with the headset on using the 3D video feedback while those same images are sent 

to the COPCAMs platform where all tasks of image processing and object recognition are performed 

real time pushing parallel processing to the limit. Different object recognition algorithms will be applied 

allowing the system to provide an augmented reality experience by highlighting objects and providing 

related information. 

The outcome of this processing is used to generate the information will appear in an overlay over 

the video feed providing help, guidance or important data of that object to the user in real time. 

 

: Virtual reality headset with front mounted stereo camera 
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2.4 Robot tracking task (UC) 

The UC proposes a system and method to obtain the position of a robot/machine in an industrial 

environment applicable to any atmosphere (indoors or outdoors). This system comes under the advanced 

manufacturing applications’ use case of COPCAMS project. 

The system is based on the use of (Figure 10): 

• light sources used as markers to calculate relative positions of the industrial machinery/ 

robot, 

• a stereo camera to display these markers in the image of the scene, 

• an angle measuring device (as a gyroscope or electronic compass) to provide angles of 

rotation of the target object at each instant of time, 

• and a digital signal processor, with uses the stored coordinates (from the memory) and 

output parameters obtained from the stereo camera and angle measuring device, to 

determine the target object position on the 3D environment. 

 

: Schematic of the System Design 
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3 Demonstrator architecture and methodology 

This section describes detailed architecture and methodology of the field tests, presented in the 

Section 2. Like the field tests, the architecture is divided into four major fields: architecture of the quality 

control tasks, architecture of the object positioning task, architecture of the AR tasks and architecture of 

the robot tracking task. 

3.1 Quality control tasks (KTOR, JSI) 

The demonstrations will be set up in the industrial environment in KTOR production facilities. 

During the demonstration design all safety and other technical recommendations will be considered. 

The production facilities, where the demonstration of the quality control task will be set up, is shown in 

Figure 11. 

 

: KTOR production facilities 

The quality control tasks will demonstrate COPCAMS solutions in the KTOR production in the 

various stages of the commutator production process. Nevertheless, all quality control use cases will 

involve the following hardware elements: 

1. COPCAMS platform (NVIDIA Jetson TK1) 

2. IP camera with appropriate lens and illumination 

3. Mechanical manipulator for the commutators 

4. Automation elements for controlling quality control on the production line (PLC, sensors, etc.) 

The selected platform for quality controls in KTOR is NVIDIA Jetson TK1 (Figure 12a) with 192 

GPU cores. The platform will retrieve captured images from the camera, perform image processing and, 

based on the implemented classification model, classify commutators into the appropriate quality class. 
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NVIDIA Jetson TK1 platform supports OpenCV framework, where machine vision functions are 

already partially optimized for the implementation on the GPU. Currently, in KTOR all machine vision 

solutions are PC-based, with implemented machine vision algorithms running on the CPUs. The selected 

platform represents an alternative to the current solution and solution beyond the state of the art, since 

there are no available commercial GPU-based machine vision systems on the market. 

In the quality control tasks the selection of the camera resolution, type of the lens and illumination 

are crucial. The camera resolution determines the minimal size of the defects that can be detected. The 

selected cameras have to be certified for the industrial environment usage and resistant to the 

electromagnetic interference (EMI) caused by the production lines. The selected IP Gigabit Ethernet 

(GigE) camera is shown in Figure 12b. For each use case, the lens and illumination will be selected 

based on the properties of the semiproduct and the type of the defects we want to detect. The choice of 

a suitable illumination is crucial to ensure constant and reliable analysis of the inspected parts. The 

selection of the lens and illumination will be done empirically.  

 
 

a) b) 

: Images of: a) NVIDIA Jetson TK1 platform, b) the selected IP GigE camera 

In order to implement the quality control tasks to the selected production lines, adequate mechanical 

manipulators with the automation elements will be designed. These manipulators, incorporating 

Programmable Logic Controllers (PLCs), will communicate with the COPCAMS platform to ensure 

smooth operation of the production lines and provide the physical classification of the commutators. 

Manipulators with adequate automation elements will be designed in KTOR. Schematic representation 

of the connections between the system elements is shown in Figure 13. 
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: Schematic representation of connections between the system components 

Three quality control tasks share identical architecture and methodology. Each use case scenario 

consists of the following actions:  

a) semiproduct is traveling along the conveyor belt,  

b) when the semiproduct reaches the predefined point on the production line (i.e. triggering 

point), it is transferred to the quality control system, 

c) images of the semiproduct are captured, 

d) machine vision algorithm extracts informative attributes, 

e) based on the attributes and pre-built classification model, semiproduct is classified into the 

appropriate quality class, 

f) semiproduct is either released back to the production line or eliminated from the production 

process.  

The sequence diagram of the quality control task is shown in Figure 14. 
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: Quality control tasks sequence diagram 
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To allow undisturbed production of the commutators, all these actions have to be performed within 

the cycle time of the specific production process. The total cycle time is composed of the manipulation 

time, the commutator inspection and classification time. In order to ensure continuous operation of the 

production line, hardware and software have to be properly selected and configured.  

The selected quality control tasks differ regarding the purpose of the demonstration and the 

methodology used for the task implementation. The dimensional task measurement serves as a 

validation of the selected platform and methodologies, and it is identified as a less complex task. The 

methodology in the soldering quality control task and roughness measurement task will be upgraded 

with ICT methodologies (machine learning and optimization methods) and will represent the software 

framework for developing new quality control applications based on the selected platform and 

developed methodology. 

3.1.1 Software methodology 

As described in Section 2.1.1 in the dimensional measurement task, three commutator characteristics 

have to be checked: distance between two opposite segments, angle between two adjacent segments and 

area without the copper inclusions (Figure 3). To measure the listed characteristic, dedicated machine 

vision algorithm will be developed and implemented on the NVIDIA Jetson TK1 platform. The concept 

of the software flow is shown in Figure 13.  

 

: Software flowchart for the dimensional measurement task 
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The aim of the dimensional measurement task is to verify the described hardware infrastructure. 

Since the dimensional measurement task does not require the use of the advanced ICT methodologies, 

it is expected that will be the first use case implemented on the production line. 

The soldering quality control task and roughness measurement task include advanced ICT 

techniques and share the same methodology in terms of constructing the classifier by combining 

computer vision, machine learning and evolutionary optimization techniques.  

The methodology for automating these two quality control tasks is shown in Figure 16. It consists 

of three main stages: image processing, defect classification and tuning of the machine vision function 

parameters. 

 

: A schematic view of the proposed automated parameter tuning methodology 

The image processing stage consists of several steps (e.g. capturing of images, region of interest 

(ROI) extraction, attribute/feature extraction) which will be adapted to the specific quality control task. 

In the defects classification stage, machine-learning algorithm builds classification models based on the 

attributes extracted with the machine vision algorithm. Their quality will be measured by the predefined 

fitness function (e.g. prediction accuracy). Depending of the problem type (classification or regression) 

the corresponding machine-learning algorithm will be selected. The last stage in designing the 

automated soldering control is tuning the machine vision function parameters. There are many 

optimization algorithms available for this task. As explained in detail in Section 4.1.1, for the 

preliminary tests we will use the Differential Evolution (DE) algorithm [5]. 
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3.2 Object positioning task (GUT) 

Object positioning in a cooperative multi-camera system with Radio Frequency (RF) sensing 

capabilities is a concept that expands the sensing capabilities of camera systems by adding means and 

algorithms to a smart camera system(s) that will allow them to “understand” and “interpret” RF waves 

present in the environment. One of the possible functionalities that are driven by industry needs and 

providing high added value (e.g. by optimizing production processes) is object positioning. To better 

understand object positioning in a cooperative multi-camera system with RF sensing capabilities and to 

ensure that the algorithms will address the business needs, the system concept will be presented using 

the environment where it will be finally installed for pilot tests (one of KTOR production facility). This 

is a large indoor environment with a large number of production machines. The pictures of the 

environment are presented below (Figure 17). 

 

  
: One of KTOR production facilities 

According to information provided by KTOR representatives, there are three groups of objects that 

have been initially chosen as those to be localized (see Figure 18), namely:  

- Plates 

- Mobile tool cabinets 

- Trolleys  
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: Photos of exemplary plate, mobile tool cabinet and Trolley 

 

The task of assets localization in one of KTOR industrial facilities brings many challenges and puts 

many requirements on the localization system. The background scene containing the production lines 

and workers can change dynamically and in an unpredictable way. The localized assets can be obscured 

not only unintentionally, but such situation is often the result of their typical functionality. Another 

attribute that characterizes every subgroup of localized assets is lack of distinctive features that are easy 

to observe by a vision system. Such environment can create many problems for typical Computer Vison 

algorithms and puts the necessity of use of other data sources that can provide useful support to the 

localization process. The use of measurements of radio signals parameters as an additional data source 

can help solve these problems, as radio signals are partially immune to no LOS (Line Of Sight) problem 

and their indoor behavior differs depending on the frequency. Moreover, the identification problem is 

very easy to resolve and an additionally radio based subsystem provides a very useful communication 

layer.  

To fulfill all system requirements, the following system elements will be involved (Figure 19): 

1. Integrated camera (the key element of the system). 
2. Active RFID tags (2.4 GHz) with additional sensors/actuators 
3. Passive RFID tags and readers (868 MHz) 

 

   

: Exemplary active RFID tags, passive RFID tags and cameras 
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The picture bellow (Figure 20) presents simplified connections between the localization system 

components based on a Smart Camera with RF sensing capabilities. 

 

 

: Simplified connections between the system components 

 

Each of this technologies will provide localization data. Camera based Computer Vison may operate 

based on background subtraction algorithms (e.g.  Gaussian Mixture Model) and in cooperation with 

active tags which will provide dynamic localization information  using codes emitted by integrated light 

source (e.g. LED). Active tags will also allow for easy identification of object by the vision subsystem. 

Active RFID will provide information acquired from RF signal properties that includes RSS (Received 

Signal Strength). Measurement of this properties with cooperation with dedicated algorithm allows for 

calculation of object position in the investigated area. Passive RFID allows for localization based on 

proximity and together with dedicated antennas for determination of direction of signal arrival, the same 

as for active RFID. 
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To provide a clear view of the whole localization system, the list of components has been divided 

to three parts based on their functionality. Each part contains modules that provide necessary 

functionality and omits the issues like system calibration: 

1. Smart Camera with RF sensing capacities 
a. Integrated Camera 

i. USB camera 
ii. Active RF tag (2.4 GHz) 
iii.  Passive RFID reader (868 MHz) [option, may not be present in the final 

version of device] 
iv. multicore System on Chip (KeyStone2 platform) 

b. Active RFID tags  
i. RF module (2.4 GHz) 

ii. Steerable LED  
iii.  UHF passive RFID sensing unit [option, may not be present in the final 

version of device ] 
iv. Passive RFID reader (868 MHz) 
v. Passive RFID tags (868 MHz) 

2. Integration & data fusion infrastructure 
a. Computation server (for numerical computations) 
b. Switch 

3. Additional infrastructure 
a. Power sources 
b. Data presentation 
c. IP cameras [optional, may not be present in the demonstrator] 

 

Each of the enumerated parts fulfills its role in whole system. Smart Camera with RF sensing 

capabilities is a device that merges advantages of both vision and RF measurements. The Integrated 

Camera is an integrated device that has both vison and RF sensing capabilities and integrated 

computational unit (KeyStone2 mSoC). The main advantage of this device is its ability to gather all 

necessary measurement data and provide processed localization data. The necessary algorithms can be 

implemented to work on the device. These properties have huge impact on the whole system in terms of 

its reduced complexity and scalability.  Integrated Camera being a component of Smart Camera with 

RF sensing capabilities will also have the capability of working in the arrays or meshes of same kind of 

devices. The main sense of cooperation is the exchange of raw or preprocessed measurements and 

management of the whole system. 

Active RFID tag is an integrated device able to communicate with Integrated Cameras and 

Computation server. Its main purpose is integration of nearly all kind of data sources in one device 

(some of them indirectly) which allows for system complexity reduction and, what is most important, 

easier possibility of merging all kinds of data.  Another very important advantage of such integration is 
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greater ability of adjusting data sources behavior depending on changing environmental conditions and 

simpler managing of whole system. Depending of role in the system Active RFID tag can be integrated 

in Integrated Camera, play the role of Active RFID that is being localized or be a standalone reference 

device. 

Passive RFID tags together with Passive RFID readers are intended to work in places where the 

active tag will not be used or simultaneously. Active RFID tag, due to its functionality, has to have 

dimension and structure capable of containing all of its modules and provide them with a power source. 

Due to this fact, in places where not all active tag functionalities will be necessary or where 

dimensionality of data source device is extremely important, standalone devices will be used. 

The role of Active RFID tags not being localized and passive RFID readers not being part of 

Integrated Camera is to extend smart camera with RF sensing capabilities, so that it is more flexible and 

adjusted to practical implementations and able to provide/analyze data information from places where 

the Integrated camera will not be used. We can distinguish three reasons of no Integrated Camera readers 

usage. The first reason is connected with its physical dimensions – if there is no place or possibility for 

placing Integrated Camera, then standalone devices should be used. The second reason is connected to 

the area of interest – if the part of environment we are interested in is too difficult or makes impossible 

some kind of data measurement, the usage of full capability sensing device will not be economically 

effective. The third reason is insufficient amount of Integrated Camera devices. If RFID Reader is not 

used as a part of Integrated Camera, Active RFID Tag provides an interface that allows communication 

with Integrated Camera. 

The part called “Integration & data fusion infrastructure” is responsible for communication, system 

functionality, data integration and computational power. As Smart Cameras are capable of working as 

standalone devices, other data sources need external processing and the last stage of data fusion and 

integration need to be processed on device. 

The last part called “Additional infrastructure” is not strictly connected with the Smart cameras with 

RF sensing capabilities system. This part represents an external device with software responsible for 

presentation of localization data with the end user system governance interface and additional devices 

necessary for system work, but does not provide functionality. Additional IP cameras that can be 

integrated with Smart Cameras with RF sensing capacities system and extend its operational region 

without usage of Smart Cameras devices are enumerated in this section.  

Figure 21 presents a simplified diagram of system parts and data flow between the components. 

Some of solutions (marked with dashed line) are at this moment considered as optional and may not be 

implemented in the final version of system or in the T5.2 demonstrator. 
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: Simplified block scheme of expected system architecture and data flow 

Processed localization, visual and radio data is collected in the computational server. Especially due 

to the fact that UHF RFID Readers and Active Tags are not part of Integrated Camera the server plays  

an important role in the whole system performance and capabilities. Computational server stores 

software responsible for system governance, some of data integration algorithms, localization 

algorithms (if not implemented in Integrated Cameras) and data storage.  

3.3 Augmented reality task (TED) 

The COPCAMS system will record and analyze the view of the system user through a stereo camera. 

In addition, for a proper posterior 3D visualization, images need to be undistorted and rectified. The 

COPCAMS platform will help also in this task. 
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The data processed by the COPCAMS platform will be sent to the NUC CPU for further processing, 

where a 3D image will be generated combining both the real data from the cameras and the augmented 

reality information generated in real time. The resulting images will then be projected to the headset 

where the user will perceive the illusion of seeing data integrated in his sight. The viewer will be 

developed using Unity3D because of the SDK for Oculus Rift headset usage. The architecture of the 

system is shown in Figure 22. 

 

: Demonstrator architecture 

The COPCAMS platform will not only apply different preprocessing algorithms in order to produce 

undistorted and rectified images that will be provided to the NUC CPU for the 3D image generation, 

but will also run object recognition algorithms that will provide the NUC CPU with all the necessary 

information to generate the augmented reality scene. 

The core object recognition algorithms developed will be based on key point model matching, 

although other alternative identification methods will be explored. 

Image processing algorithms will be implemented using OpenCV and OpenCL to take full 

advantage of the COPCAMS platform. 

This preprocessing will leverage the performance of the whole system, so the NUC can be used in 

visualization related CPU intensive operations like 3D scene generation. 
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3.4 Robot tracking task (UC) 

3.4.1 System implementation 

This section explains the system for obtaining, from the use of one or more luminous markers, the 

position and orientation of a user, in different possible environments, which may be indoor or outdoor, 

in a proposed controlled setting. 

The method consists of different stages, where the input data from the cameras and gyroscope is 

processed to obtain the target object position. In the following lines, the data path is explained to 

understand how each phase treats data and obtains different output values. 

• Stage 1: input data from the environment  

o Capture right and left images from the stereo camera  

o Obtain rotation angles from a gyroscope or an electronic compass   

 

• Stage 2: detect movement and markers 

o Check the value of the gyroscope to know if  the user has turned 

o Compare the current image frames and the previous image frame to notice movement 

from the user 

o Apply an algorithm to get the image coordinates of the reference markers and its radius 

(u, v, r). 

 

• Stage 3: identify movement type 

o Recognize the type of movement performed by the user, if it is frontal or horizontal, 

considering the markers radius. 

o Verify current markers coordinates by comparing them with the previous image region.  

 

• Stage 4: this step is split in two sub-stages, depending on the type of movement detected.  

Frontal movement: 

o Obtain the distance (m) between the user and the marker by applying stereo 

triangulation. 

o Obtain the distance (m) between the user and the marker by applying linear 

triangulation on the left image. 

o Obtain the distance (m) between the user and the marker by applying linear 

triangulation on the right image. 

 



Public Version COPCAMS Cognitive & Perceptive Cameras 

ARTEMIS-JU – GA n°332913 30 2016-01-05 16:08 

Horizontal movement: 

o Obtain the distance (m) of the horizontal displacement by applying a version of stereo 

triangulation (instead of taking two images of the same time sifted, it is going to use 

one image of the current time and another of the past time) on the left images. 

o Obtain the distance (m) of the horizontal displacement by applying a version of stereo 

triangulation on the right image. 

o Obtain the distance (m) of horizontal displacement by applying linear triangulation on 

the left image 

o Obtain the distance (m) of horizontal displacement by applying linear triangulation on 

the right image 

 

• Stage 5: Get the user distance movement 

o Check and select the correct results of distances calculated on the stage 4, knowing the 

type of movement (frontal or horizontal), the type of displacement (if it is a frontal 

movement it can be an approaching or reprocessing from the marker and if it is a 

horizontal movement it can be right or left shift) and the number of detected markers 

on the image.  

 

• Stage 6: Obtain the target object position on the 3D environment 

o Get the final position by considering the data from the stage 5, the previous position 

and the user rotation. 

3.4.2 UML/MARTE Model 

In order to support all different stages of the flow, a powerful high-level methodology has been 

used. It is based on UML for development of HW/SW embedded systems; and the MARTE profile has 

been used to consider all the specific characteristics related to the embedded system design. This 

methodology can completely describe the system, enabling automatic generation of the input code.  

UML/MARTE model is based on graphical descriptions, which are called views. These views describe 

the system functionality, the target platform and the resource allocation. They are specified by the 

corresponding stereotypes: 

1. Platform Independent Model (PIM) describes the functionality: 

• Data View, 

• Functional View, 

• Application View, 

• Concurrency View, 

• Memory Space View. 
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2. Platform Description Model (PDM) describes the platform where the functionality can be 

mapped: 

• HW Platform View, 

• SW Platform View. 

 

3. Platform Specific Model (PSM) describes the mapping of the functional components in the 

platform: 

• Architecture View. 

The work carried out on the first version of the model has been focused on the development of 

functional view, application view and architecture view and included a first definition of the system 

functions, their input and output signals, the relationship between those functions and the description of 

the selected platform. 

• Functional View: in order to enable the communication between components, a set of 

services have been defined. These services are grouped into interfaces (Figure 23). These 

interfaces are specific for each inter-component communication channel (Figure 24). 

 
: Interface diagram 

 

• Application View: it shows the different components in the system and its relationship to 

others. A component offers a set of services (provided interface) and others components 

makes use of them (required interface). 
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: System application structure 

• Architecture View: it is a platform specific model which defines the mapping of the functional 

components in the platform (Figure 25). It describes how the functionality was allocated on our 

development board, ODROID-XU3, which has 4 big cores (Cortex-A15) and 4 LITTLE cores 

(Cortex-A7). 

 

: System mapping 

It also includes the architecture of the development board (Figure 26). It describes the distribution 

of the elements, where processors Cortex-A7 (proc0-proc4) and processors Cortex-A15 (proc5-proc7) 

are connected to 2GB LPDD3 RAM (RAM) though an AXI/AHB bus (main_bus), two bridges (bridge) 

and two AMBA buses (bus).  
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: Platform architecture 

 

4 Related lab experiments 

4.1 Quality control tasks (KTOR, JSI) 

4.1.1 Quality inspection of copper-graphite soldering 

We are concerned with the estimation of the quality of copper-graphite joints in commutator 

manufacturing – a classification problem in which we wish to detect whether the joints are soldered well 

or have any of the four known defects: 

− Metallization defect: presence of visible defects on the metallization layer, 

− Excess of solder: presence of solder spots on the copper pad, 

− Deficit of solder: lack of solder in the graphite-copper joint, 

− Disorientation: disorientation between the copper body and the graphite disc. 

Commutators consist of a number of segments, depending on the model (the considered commutator 

model from Figure 27 a) consists of eight segments). If a single segment has any of the listed defects, 

the whole commutator is labeled as defective and removed from the production process.  
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a) b) c) d) e) f) 

: Images of: a) a graphite commutator, b) a commutator segment, c) a ROI for 

metallization defect, d) a ROI for excess of solder, e) a ROI for deficit of solder, and 

f) a ROI for disorientation 

Different defects occur in different regions of the commutator segment. For example, the region 

where the excess of solder is usually detected is different from the region where disorientation can be 

observed. Therefore, images of commutator segments can be divided into four regions of interest (ROIs), 

one for each defect (see Figure 27). 

Because five different outcomes are possible (rare cases where two or more defects appear on a 

single commutator segment are labeled with just one defect and are not differentiated further), we treat 

this as a classification problem with five classes. While KTOR is indeed interested in keeping statistics 

of the detected defects, their main concern is that no false positives are found. This means that cases 

when a defective commutator is labeled as without defects are to be avoided as much as possible. This 

is, of course, very hard to achieve. 

4.1.1.1 Automated quality-control procedure 

This quality-control procedure can be automated by means of an on-line classifier that can assess 

the quality of commutators as they are being manufactured. A classifier for this task can be constructed 

by combining computer vision, machine learning and evolutionary optimization techniques in the 

following procedure: 

 Define a set of image features. 

 Use an evolutionary algorithm to search for the values of image processing parameters that 

result in the highest fitness. Evaluate each solution using these steps: 

a. Based on the chosen parameter values, use the image processing methods to 

convert each image of a commutator segment into a vector of feature values.  

b. Construct a classifier (in our case a decision tree) where the vectors of feature 

values serve as learning instances. Estimate classifier performance and use this 

value as solution fitness.  

 Choose the best found classifier and the corresponding image processing parameters to detect 

defects in images of new commutator segments as they are being manufactured. 
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Let us now describe the steps of processing commutator segment images, building decision trees 

and optimizing classifier performance in more detail. 

Processing commutator segment images 

Processing of images is the most time consuming task of this procedure and is done in several steps. 

First, the image of the commutator segment needs to be properly aligned. Next, the four ROIs shown in 

Figure 27 need to be detected. This is done by applying four previously prepared binary masks to the 

image, one for each ROI. Each of the ROIs is further processed as follows. Depending on the ROI, the 

image in RGB format is converted into a gray-scale image by extracting a single color plane. Based on 

expert knowledge, red is used for all ROIs except the ROI for excess of solder, which uses the blue color 

plane.  

The final three steps require certain parameters to be set. A 2D median filter of size 1 × 1, 3 × 3 or 

5 × 5 is applied to reduce noise. Next, a binary threshold that can take values from {1, 2, …, 256} is 

used to eliminate irrelevant pixels. Finally, an additional particle filter is employed to remove all 

particles (connected pixels with similar properties) with a smaller number of pixels than a threshold 

value from {1, 2, …, 1000}. Note that because of the diversity of the defects, it is reasonable to assume 

that these three image processing parameters should be set independently for each ROI. This means that 

in total, 12 image processing parameters need to be set.  

After these image processing steps, the chosen set of features is extracted from images of each ROI: 

− number of particles,  

− cumulative size of particles in pixels, 

− maximal size of particles in pixels, 

− minimal size of particles in pixels,  

− gross/net ratio of the largest particle,  

− gross/net ratio of the cumulative size of particles. 

To summarize, computer vision methods are used to convert each commutator segment image into 

a vector of 24 feature values.  
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Building decision trees 

Commutator segment images with known classes are used to construct a database of instances, upon 

which a machine learning classifier can be built. We chose decision trees since they are easy to 

understand and implement in the on-line quality-control procedure.  

Note that the classifier predicts defects on commutator segments. For the final application, 

predictions for all segments of a commutator need to be aggregated in order to produce a prediction for 

the commutator as a whole.  

Optimizing classifier performance 

Classifier performance can be measured in several ways, ranging from classification accuracy, the 

F-measure to other, even custom functions that depend on the domain. Classification performance is 

estimated with 10-fold cross-validation, a popular technique for predicting classifier performance on 

unseen instances. 

In order to find the values of image processing parameters that will result in a classifier with high 

accuracy, an evolutionary algorithm is employed to search in the 12-dimensional space of image 

processing parameter values. 

4.1.1.2 Performed experiments 

Here we report on lab experiments that were performed in order to test the suitability of the described 

automated quality-control procedure. While the studies had different experimental setups, they were all 

performed on the same commutator soldering domain with 363 instances and an uneven distribution of 

classes (see Table 2).  

Class Number of instances Frequency [%] 

No defect 212 58.4 

Metallization defect 35 9.6 

Excess of solder 35 9.6 

Deficit of solder 49 13.5 

Disorientation 32 8.8 

Total 363 100.0 

 

The initial experiment [2] explored whether computer vision, machine learning and evolutionary 

optimization techniques could be employed to find small and accurate classifiers for this problem. The 
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DEMO (Differential Evolution for Multiobjective Optimization) algorithm [4] was applied to search for 

small and accurate trees by navigating through the space of decision tree parameter values, while the 

parameters of the computer vision methods were fixed to values chosen by an expert. Classifier accuracy 

was chosen to measure classifier performance. The study found this setup to be beneficial, but urged to 

focus future efforts on more sophisticated extraction of features from the images as this seemed to hinder 

the search for more accurate classifiers. 

The second study [3] presented a different setup for the automated quality-control procedure to 

address the issues from the first study. Instead of optimizing decision tree parameter values, differential 

evolution (DE) [5] was used to search for the best setting of image processing parameters. The single 

classification problem with five classes was split into four binary classification sub-problems, where 

each sub-problem was dedicated to detecting one of the four defects and used data only from the 

corresponding ROI. In addition, instead of classification accuracy, the measure to be optimized was set 

to a function penalizing the portion of false negatives 100 times harder than the portion of false positives. 

The study found that the new combination of computer vision, machine learning and evolutionary 

optimization techniques was powerful and achieved some good results. While optimization with DE 

was always able to find better parameter settings for image processing methods than those defined by 

domain experts, some sub-problems proved to be harder than others. For example, detection of 

commutator segments with excess of solder achieved a satisfactory accuracy, while the detection of 

metallization defects did not. 

The third study [1] investigated the correctness of the implicit assumption from [3] that only features 

of the sub-problem-specific ROI would influence the outcome of the classifier for that sub-problem. The 

study found that features from other ROIs can be important as well, suggesting that it might be better 

not to split the classification problem into sub-problems after all. 

4.1.1.3 Lessons learned 

Based on these lab experiments (and other experiments of smaller scale not reported here), we came 

to the following conclusions and suggestions for future work. 

Suitable automated quality-control procedure 

The experiments have proven that the designed automated quality-control procedure is indeed 

appropriate for this problem and we only need to fine-tune some of its elements to improve its 

performance.  

Larger dataset needed 
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Most of the experiments have shown that the commutator soldering domain from Table 2 is not 

large enough for constructing more fine-grained classifiers with better performance. Therefore, we have 

already produced a larger dataset containing 533 commutators, corresponding to 4264 instances of the 

domain, which will be used to train the classifiers that will be finally implemented on the KTOR 

production line. 

Need to improve detection accuracy for some defects 

The difficulty of detecting a defect differs very much depending on the defect in question. For 

example, the excess of solder is much easier to detect than the deficit of solder for humans as well as 

for computer vision methods. While in the reported experiments classifiers often achieved satisfactory 

performance on some defects, results on other defects were not yet acceptable and more effort is required 

to improve them. Based on the findings of the previous studies, future work will be directed mostly 

towards the processing of commutator segment images, where different ROIs and new features should 

bring the sought improvement. 

4.1.2 Measurement of the commutator mounting holes roughness 

The aim of this task is to estimate the quality of the commutator mounting hole treatment. The 

validation of the treatment quality is done by measuring the roughness of the hole surface. For the 

specific commutator the allowed value of roughness is specified by the Rz parameter. This parameter 

may achieve maximum value of 16 µm. Commutators that have roughness of the mounting hole above 

this value are not acceptable and must be removed from the production process. Magnified mounting 

hole area is show in Figure 28. The mounting hole surface can be presented as valleys and peaks along 

the measured surface. 

 

: Magnified commutator mounting hole area 

In order to validate the feasibility of the mounting hole roughness measurement, several experiments 

were conducted. The problem of roughness measurement can be divided into the two type of tasks: 
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a) Classification of the commutator into the appropriate binary class (commutators with adequate 

and commutators with inadequate mounting hole roughness), 

b) Prediction of the roughness value – regression. 

According to the problem type (classification or regression problem), suitable measure for the 

accuracy must be selected. Since KTOR would like to eliminate all inadequate parts from the production 

process, the false positives should be minimized. In case of prediction of the roughness value, the error 

of predicted value should be minimized.  

4.1.2.1 Automated quality-control procedure 

Similarly as inspection of the copper-graphite soldering, this quality-control procedure can be 

automated. An on-line classifier can assess the quality of the commutator mounting hole roughness as 

they are being manufactured. By combining computer vision, machine learning and evolutionary 

optimization techniques we can automate the procedure of building the classifier. 

Processing Commutator Mounting Holes Images 

In the real-world application, the processing of captured images is the most time consuming task. It 

is composed of several sequential steps in which machine vision algorithms are applied. To gain optimal 

results, certain parameters of these algorithms must be set. First, the image of the mounting hole has to 

be cropped to the desired size of ROI (Figure 28). Next, the 2D median smoothing filter is applied to 

reduce the noise on the image. To achieve the optimal results the filter size must be set correctly (size 

1 x 1, …, 100 x 100). After the image is filtered, certain features are extracted from the grey scale image. 

These features forms part of a feature vector, which is later used as an input to the machine learning 

algorithm. Next, a binary threshold is used to remove some additional irrelevant pixels. Since the input 

image is 8-bit greyscale image, the binary threshold can take values from {1, 2, …, 256}. Finally, second 

set of features are extracted from the binary image and added to the feature vector. In total, 7 image 

processing parameters need to be set. 

The result after these image processing step is a feature vector, containing 25 different features of 

each captured image. Some of these are: 

- number of  valleys on the image, 

- number of  peaks on the image, 

- distance between the adjacent valley and peak on the image, 

- 8-bit grayscale value of the lowest valley, 

- 8-bit grayscale value of the highest peak, 

- calculated Fast Fourier Transform (FFT) values on the line profile along the measured surface, 

- etc. 



Public Version COPCAMS Cognitive & Perceptive Cameras 

ARTEMIS-JU – GA n°332913 40 2016-01-05 16:08 

Building a classifier 

The result of the above procedure is a database containing feature vectors of processed images. As 

described in Section 4.1.2, this task can be can be divided into two subtasks: classification and regression 

task. Based on the built database, the machine learning algorithm induces a decision model – a decision 

tree in case of the classification task or a regression tree in case of the regression task.  

Optimizing classifier performance 

To optimize the classifier performance an evolutionary algorithm is applied. The algorithm searches the 

25-dimensional space of image processing parameter values and tunes them until the best fitness 

function value is achieved. The model performance is estimated with 10-fold cross-validation. The 

procedure is the same for the classification and regression task.  

4.1.2.2 Performed experiments 

To test and validate the presented methodology some initial experiments were performed. The 

experiments were performed on the commutator soldering domain with 300 instances and distribution 

as shown in Table 3. To obtain the reference values of the mounting hole roughness, all commutators 

mounting holes were measured with a stylus profilometer. Each mounting hole roughness was measured 

three times, and then averaged. 

Class Number of instances Frequency [%] 

Roughness Rz ≤ 16 µm 159 53.0 

Roughness Rz > 16 µm 141 47.0 

Total 300 100.0 

The initial experiment explored the possibility of employing computer vision, machine learning and 

optimization techniques for autonomous building of the binary classification model. The DE algorithm 

[5] was used to vary and search for the optimal settings of the machine vision function parameters, while 

parameters of the machine learning algorithm were set to the default values. The classifier performance 

was measured by the classification accuracy. The study found that DE algorithm rather quickly iterates 

to the solution, where classification is 100% accurate. Furthermore, optimized classifier was able to 

100% classify the instances based on just one attribute – FFT frequency on the line profile along the 

measured surface. 

After the validation of the proposed methodology on the binary classification problem, the 

regression problem was tackled. The goal of the regression task was to calculate the measured value of 
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the roughness. For this purpose, the regression trees algorithm was employed. The classifier 

performance was measured by the root mean squared error (RMSE). The DE was used to search for the 

best settings of the image processing parameters. Several runs of the DE were performed and the best 

run achieved the RMSE value of 0.94. Although this result is quite incentive, there are possibilities for 

improving the regression model (e.g. through the extraction of additional attributes from the image and 

optimization of the machine learning algorithm parameters).  

Based on the performed lab experiments the feasibility of the measuring of roughness based on 

machine vision procedure was confirmed. Furthermore, the proposed methodology, which includes 

machine learning and optimization techniques, has proven to be successful in finding better 

classification model compared to the manual setting of machine vision parameters. However, the 

problem of the regression model accuracy will be further analysed. 

4.2 Object positioning task (GUT) 

4.2.1 CV based positioning of Active RFID Tag  

To proof the concept of active tag positioning, several experiments were prepared. The main aim 

was to check the effectiveness of proposed methodology (see deliverable D3.6) in terms of processing 

time and a proper identification. Second aim was to mimic the conditions of real industrial hall and use 

a high-resolution cameras as well, to acquire large, reliable database of video sequences for future 

research.  

The prototype positioning subsystem consisted of (Figure 29): 

• Control unit – personal computer with appropriate software to provide communication 

between all other parts of the system (cameras, wireless tags and so on), to visualize results 

and to maintain overall performance.  

• Camera device (with lens) to provide video stream of a scene. Mounted on a metal stand 

and placed adequately to the position of visual tags.  

• Wireless router/gateway to provide network gate (IPv6) for JennetIP protocol. 

• Active Tag prototype – mobile JennetIP devices with LED top-mounted on it. 

In final solution functionalities of all components will be provided by system of Smart Cameras with 

RF sensing capabilities that are described in Subsection 3.2. 
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: The scheme of developed positioning subsystem 

We used simple amplitude-shift keying modulation to transmit signal from WLT to camera device. 

Symbol time was set to 100 ms, so the whole sequence took 1.4 s (Figure 30). 

 

 

: Exemplary sequence transmitted as identification of  Active Tag 

S0, S1, S2, S3, S4, S5  – Constant synchronization bits.  

B0, B1, B2, B3, B4, B5, B6  – Sequence data bits carrying a unique WLT identification.    

0
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P     – Parity bit. 

Proposed algorithm [21]was applied to acquired camera image. In Figure 31 the scene image and 

masks produced by algorithm stages are presented. In the last image all Tags are positioned (in image) 

and identified. 

   

 

: Exemplary steps of tag detection algorithm 

4.2.1.1 In-image tag positioning 

The first task was to examine the effectiveness of positioning tags on the camera image. Experiments 

were performed in “Linte^2” laboratory located in the Faculty of Electrical and Control Engineering at 

the Gdansk University of Technology, that can be treated as fine reproduction of a common industrial 

hall (Figure 32). As the camera device Point Grey FLEA USB3.0 cameras were used. 
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: The industrial hall used for test purposes 

 

The aim of experiment was to prove efficiency of proposed algorithm in terms of processing time 

and accuracy. A few Active RFID Tags were placed in the camera field of view and localization 

command was triggered. Measurement procedure consists of the following stages: 

1. Retrieving the list of currently available (connected) Active RFID Tags. 

2. Sending unique blinking sequence to each of available Active RFID Tags. 

3. Triggering localization procedure requested by user. 

4. Start video stream acquisition from the camera. 

5. Broadcast “start sequence” command to all available devices. 

6. After calculated time, stop video acquisition. 

7. Searching for known sequences in video buffer. 

8. Matching sequences with corresponding devices. 

The three simple performance indicators can be distinguished: 

• Overall measurement time – duration of the whole measurement procedure: from pushing 

“start” button, to get tags positions (steps 3 – 8). 

• Video analysis processing time – duration of computer vision algorithms (step 7).  

• Positioning efficiency – ratio of correctly found and identified Active Tags in camera frame 

to all connected and visible devices. 
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Scenario 1 

 

: The result of WLT detection in scenario 1 

In the first scenario all Active RFID Tags were placed on the floor 3 m away from the camera device 

in a room adjacent to the main hall (Figure 33). Light conditions were very good – illuminance at about 

400 lx, smooth shades and not polished floor. Tags were lying about 5 – 10 cm from each other. The 

results are shown in Table 4. 

Overall measurement time 2724 ms 

Video analysis processing time 378 ms 

Positioning efficiency 100 % 

Video parameters 1280x1024 48 FPS 

Scenario 2 

 

: The result of  Tags detection in scenario 2 
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The second scenario was conducted in industrial hall where Active RFID Tags were placed at some 

different distances form camera (Figure 34). The furthest devices were placed 15 m from camera. 

Illuminance at about 300 lx was observed. The first problem was revealed – with a high FPS coefficients 

light flickering (that came from PWM-modulated LED lamps) was observed, but it has not spoiled the 

results. The results are listed in Table 5. 

Overall measurement time 3106 ms 

Video analysis processing time 403 ms 

Positioning efficiency 100 % 

Video parameters 1280x1024 50 FPS 

 

Scenario 3 

 

: The result of Tags detection in scenario 3. Red circles are bad LED detection due to 

reflection phenomena 

In this experiment Tags were placed at about 7 m from camera and very close to each other (3 – 7 

cm). The floor was polished, thus reflection problem appeared, which is illustrated in Figure 35. The 

result of this scenario are shown in Table 6. 
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Overall measurement time 4543 ms 

Video analysis processing time 1067 ms 

Positioning efficiency 100 % 

Video parameters 2048x2048 24 FPS 

 

Scenario 4 

 

: The result of Tags detection in scenario 4 

In this scenario the close to real industrial case was recreated in the test lab, so the camera was 

placed as high as possible with wide view on the scene. Active RFID Tags were placed randomly – in 

long and short distance from camera and each other (Figure 36). Tag “e97d” was situated about 25 m 

away from camera.The results are listed in Table 7. 

Overall measurement time 2966 ms 

Video analysis processing time 315 ms 

Positioning efficiency 100 % 

Video parameters 1280x1024 48 FPS 
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Scenario 5 

 

: The result of Tags detection in scenario 5 

Overall measurement time 4052 ms 

Video analysis processing time 816 ms 

Positioning efficiency 100 % 

Video parameters 2048x2048 26 FPS 

Scenario 6 

 

: The result of Tags detection in scenario 6 
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In this experiment we placed Active RFID Tags in long distance from camera (about 20 m) and 

close to each other (about 5 cm). The results are listed in Table 9. 

Overall measurement time 3015 ms 

Video analysis processing time 488 ms 

Positioning efficiency 100 % 

Video parameters 1280x1024 45 FPS 

4.2.1.2 Tags localization in a real-world coordinate system 

In order to examine the solution in terms on effectiveness and reliability, the experimental setup was 

developed. Algorithms were implemented with use of C++ programming language and  OpenCV image 

processing library to provide appropriate data-types, structures and basic algorithms (for detailed 

description of algorithms see deliverable D3.6). Large industry hall in the Faculty of Electrical and 

Control Engineering at Gdansk University of Technology was used as the experimental environment. 

The hall floorplan is shown in Figure 39. The reason for using such a location was recreating the real 

factory conditions. During the experiment, some encountered problems occurred: 

• High overall brightness, which decreases contrast between tags’ LED light and the scene 

lighting. 

• Industrial hall lighting based on PWM-modulated LED lamps, which was generating some 

flickering in frames’ brightness at high FPS sequences. 

• Additional in-frame motion, which came from normal factory’s daytime activities. 

• High-reflective floor and some metallic equipment, which could mislead detection algorithm. 

 

 

: The map of the whole factory hall with the area of experiment (green box) and 

camera positions (red) 
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In the area of experiment, 14 Active RFID Tags were placed and localized with usage of 

implemented algorithm. Two types of cameras were used: 

1. Point Grey GrassHopper3 USB3.0 1024x1024 with Fujinon lens, 
2. Point Grey Flea3 USB3.0 1280x1024 with Fujinon lens. 

The location of each of cameras is marked by green dot in Figure 40. 

 

: Active RFID Tags reference positions (red) and cameras (green) 

In Figure 41, a view from Camera 1 is shown (without distortion correction). All tags were localized 

and identified. In Figure 42, one can see the results of transformation from image to map coordinate 

system. Calculated positions of tags are marked by red dots. 
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: Camera 1: the result of computer vision algorithm(view without distortion correction) 

Active RFID Tags are depicted by red dots and their IDs

 

: Camera 1: real-world positions of Active RFID Tags computed by distortion 

compensation and perspective transform algorithm 
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In Figure 43, a view from Camera 2 (without distortion correction) is presented. All tags were 

localized and identified. In Figure 44, results of transformation from image to map coordinate system 

are shown. Calculated positions of tags are marked by red dots. 

 

: Camera 2: the result of computer vision algorithm (view without distortion 

correction). Active RFID Tags are depicted by red dots and their IDs 
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: Camera 2: real-world positions of Active RFID Tags computed by distortion 

compensation and perspective transform algorithm 

As presented above, the algorithm has localized each of Active RFID Tags properly. Accuracy can 

be estimated at about 5 cm. As expected, two correlations were observed: 

• Accuracy perspective transformation decreases when the object is further from camera.  

• Lens distortion is significant at the corners and margins of frames (despite of distortion 

correction).  

Taking it into account, the best accuracy is observed in the near-middle of each frame. In this 

demonstration, each tag was captured in both of the cameras, so some of them lie very close to the frame 

borders.  

4.2.1.3 Future work and conclusions 

The performed experiments have confirmed that the computer vision subsystem can provide reliable 

and efficient positioning procedure. Most of the problems can be overcome by tuning the algorithm 

parameters and setting up cameras properly. However, a few conclusions have been noticed. 
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• Light source has to be chosen carefully. For example, it was observed, that the best color 

for LED light source is red and the worst is blue color when using the described cameras. 

Furthermore, LEDs should provide wide light angle or some diffusors should be used to 

ensure that light is radiated to the camera with enough strength. 

• It is worth considering to use a lampshade to provide high contrast between LED and 

background. 

• Camera’s lens calibration is mandatory, because distortion can significantly spoil the result 

especially in wide angles.     

In the future it’s planned to increase the experimental area and use more camera devices. It’s planned 

to examine more light sources and camera lenses. Also the calibration procedure will be improved and 

more algorithms are planned to be tested. 

4.2.2 RFID switch measurements 

Adding additional signal switching device to UHF RFID reader allows to attach more than two 

antennas (one for signal receiving and one for transmitting) to one reader. This solution allows to 

implement a simple method of localization which is based on switching signal between antennas. With 

signal switching device (Figure 45) one reader may also replace many readers what is important due to 

space saving and lower cost of implementation. Such reader can be visible by the system as several 

separate virtual readers. For now, up to eight antennas are possible to be connected to the reader. 

 

: Switching signal module (designed in GUT) 

If more than one antenna is in use, it is necessary to determine the time period in which the reader 

is able to perform passive tag readout. During this time tag has to be excited and its response has to be 

received by UHF RFID reader. In Figure 46, simplified diagram of passive RFID system [22]. 
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: Simplified diagram of passive RFID system 

It is important to determine minimum time period in which the passive tag can be read. An 

experiment was conducted and measured success ratio (calculated as the number of tag readouts divided 

by the number of antenna switches) is presented in Figure 47. During the experiment RFID Reader was 

set to continuous work and the antennas were switched by external interface. 

 

: UHF RFID Tag readouts success ratio(see text for explanations) 

As a result of the experiment, minimum time period for one antenna was determined as 120 ms. In 

order to avoid switching of the antenna during readout process and decrease readouts failures, switch 

control has been implemented in UHF RFID reader’s microcontroller. Tests of new implementation are 

in progress. 

4.2.3 RFID ESPAR antenna 

ESPAR (Electronically Steerable Parasitic Array of Radiators) is switched beam antenna. ESPAR 

arrays are suitable for positioning systems where determination of the direction of the incoming signal 

is required. ESPAR antenna has a simple construction with one active element surrounded by a defined 

number of passive elements and provides 360˚ beam control in steps. Radiation characteristic switching 
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is performed by SPST switches (ON/OFF) that have to provide required load for the parasitic elements. 

By adequate RF switches configuration obtaining a directional beam is possible [23]. 

The ESPAR antenna adapted to cooperate with UHF RFID Reader (868 MHz) was designed and 

fabricated by GUT. In Figure 48 antenna realization is presented. 

 

: ESPAR antenna (designed in GUT) - top view 

The radiation pattern and input impedance matching for three different configurations of ESPAR 

antenna were measured (Figure 49, Figure 50). The measurements were made in the anechoic chamber 

for three different configurations and the simulations were made for one configuration due to symmetry 

of the antenna. Each of configurations consists of five directors and seven reflectors.  

 

In order to validate ESPAR antenna directivity, several measurements were performed. In Figure 45, 

exemplary areas of passive RFID tag readouts are presented. Each measurement was performed with 

different height above ESPAR antenna. 
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: Radiation patterns at horizontal plane for θ = 60° 

 

: Antenna input impedance matching characteristics 

The measurement’s results show that designed and manufactured antenna has similar parameters.  

Antenna is well matched for all free configurations and is able to cooperate with UHF RFID Reader. 

In order to validate ESPAR antenna directivity several measurements were performed. In Figure 51 

one can see exemplary areas of passive RFID tag readouts. Each measurement was performed with 

different height above ESPAR antenna. 
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: Areas of passive RFID tag readouts mesured on diffret heights above ESPAR antenna

(respectively 0.5 m, 1 m and 1.5 m), red dot indicates antenna position 

The measurement’s results show that estimation of passive UHF RFID tag direction is possible when 

using designed antenna. In future work performance of localization algorithms will be tested when using 

UHF RFID reader with dedicated ESPAR antenna. 

4.2.4 RF based localization 

Three testbeds in three environments were prepared in order to measure how performance of 

different RF localization algorithms is influenced by change in RF signal propagation conditions. 

Physical layer of the first testbed is based on an anechoic chamber which is a part of the laboratory 

available at the Faculty of Electronics, Telecommunications and Informatics, Gdansk University of 

Technology. To confront anechoic chamber measurements with the results obtained in commonly used 

test sites, two more tesbeds were prepared. Office test site 1 (later called “office_1”) contains a typical 

office room equipment including furniture and computers. On the floor the same measurement grid as 

in the anechoic chamber was deployed and also a part of anechoic chamber measurement equipment 

(columns and wireless modules with batteries) were used. Office test site 2 (later called “office_2”) is 

the third measurement environment, which has the most challenging conditions for a localization sytem 

with respect to RF signal propagation. It consists of two rooms with 30 cm width wall between them 

and high density of furnitures, computers and other equipment not present in the office test site 1.  

 In figures below (Figure 52, Figure 53, Figure 54, Figure 55) and Table 10 results of localization 

process (in the form of cumulative distribution function, value 0.8 on y axis indicates that 80% of 
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measurements have localization error lower than the value indicated by x axis), performed with the use 

of data gathered from four modules installed respectivly in prepared testbeds, are presented. In all 

testbeds relative placement of reference modules and measurement points were the same. For 

localization purposes Multilateration [24], MLE [25], WCL [26] and fingerprinting [27] algorithms 

(described in deliverable D3.6) were implementd and localization processes were performed. 

 

: Localization results of multilateration algorithm calculated in three testbeds 

 

: Localization results of MLE algorithm calculated in three testbeds 

 

: Localization results of WCL algorithm calculated in three testbeds 

 

: Localization results of KNN = 1 algorithm calculated in three testbeds 

(fingerprinting map with 1 m spacing). 
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The presented result shows how external environment influences results of positining that is based 

on implemented algorithms and RSS measurements. Change of external conditions has different 

influence on each of the algorithms. Mulatilateration was an algorithm that is the most sensitive on hard 

propagation conditions while WCL and fingerpinting presented less change in accuracy. The obtined 

results are listed in Table 10. 

  anechoic chamber Office_1 Office_2 

algorithm CDF value localization error [m] 

Multilateration 

0.5 0.68 1.85 2.23 

0.8 1.10 >4 >4 

0.9 1.25 3.80 >4 

MLE 

0.5 0.69 1.05 1.20 

0.8 0.75 2.00 2.30 

0.9 1.30 2.65 3.42 

WCL 

0.5 0.76 1.19 1.35 

0.8 0.78 1.19 1.39 

0.9 1.00 1.90 2.32 

KNN=1 

0.5 0.73 1.80 2.12 

0.8 1.12 2.49 2.91 

0.9 1.12 2.50 3.06 

 

In future work more tests of RF localization algorithms in different environments will be performed 

to provide solutions that are best suited for T5.2 demonstrator. 

4.3 Augmented reality task (TED) 

In addition to the setup of the COPCAMS computing board, the TED use-case involves additional 

hardware, such as the Oculus Rift virtual reality headset and the OVRvision stereo camera. The 

communication with both elements has been tested paying special attention to the latency, since it is 

well known that latency not only degrades the virtual reality experience but also causes eye fatigue and 

motion sickness. 

A test application has been developed using Unity 5 which can show the stereo image from the 

cameras in Oculus Rift virtual reality headset with scalable and legible text in an overlay (Figure 56). 

This program is being used to determine the best configuration for easy reading and user interface 

distribution within the field of vision, a non-trivial task due to Oculus DK1's low display resolution. 
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The preliminary experiments show that the setup achieves an acceptable user experience. However, 

further tests will be needed, since at this point the object recognition middle-ware is still under 

development and such layer will introduce additional delays in the system. 

 

: Stereo display with direct video feed and overlaid text 

Regarding the image processing algorithms involved in the prototype, just the distortion correction 

and basic prototypes of a key point based model matching algorithm have been tested on the computing 

board. None of them has been optimized nor parallelized yet, so at this point no accurate estimation of 

their processing times is available. 

Although the bankruptcy of the Spanish leader has led to important delays, TED expects to provide 

a parallelized version of the distortion correction and image rectification algorithms in the following 

weeks that will be reported in D3.4. On the other hand, the object detection algorithms are still in an 

early stage and further efforts are needed, not only to improve recognition rate, but also to improve 

performance. In D4.4 the key point based model matching algorithm is presented and some insights 

about this ongoing work are provided. 

4.4 Robot tracking task (UC) 

In WP3 some different works related with image processing have been done, these labour is closely 

related with the use case and system presented above. On the following lines, it is going to be explained 

briefly how this image processing algorithms are currently used on the different data flow of the system, 

stage by stage The results of these experiments are also included in deliverables 3.1, 3.2, 3.4, and 3.5. 
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Stage 1:  Input data from the environment 

The algorithm captures image from camera and transforms the pair images into rectified and 

undistorted images to compensate nonlinear effects of the lens, such as radial and tangential lens 

distortion (Figure 57). Then, image quality is improved by removing sensor noise (Figure 58), in order 

to reduce to a minimum the mismatches between the left and right images.  

 

: Rectified and undistorted images 

 

: Noise removal from an image 

Stage 2: Detect movement and markers 

Use an image algorithm to detect the proposed reference markers (LED light + black contrasting 

surface), which are in different light conditions and on different distances from the camera (Figure 59).  
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: Markers detection 

Stage 4: Frontal movement (stereo) 

By the use of stereo cameras and epipolar geometry, get the 3D coordinates of the object to 

characterize (Figure 60). It is necessary to apply stereo mapping or stereo matching, look for the same 

point in both images; and calculate projective or epipolar geometry (Figure 61), by describing the 

relationship between the image planes (Table 11) of the camera and the point.  

 

: Stereo matching 

 

: Example of a bottle depth obtaining 

Left image 
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5 Validation 

5.1 State of the art at project start 

This section describes the state of the art in the field of smart cameras and embedded systems at 

project start. It focuses on advanced manufacturing applications examples with emphasis on the quality 

control, RFID object positioning applications and Augmented Reality tasks. 

5.1.1 Quality control tasks (KTOR, JSI) 

In the research and development of industrial vision systems, most applications are related to 

inspection. There are five types of inspection:  

a) inspection of surface quality,  

b) inspection of dimensional quality,  

c) inspection of correct assembling (structural quality)  

d) inspection of accurate or correct operation (operational quality).  

 

Surface quality inspection includes inspecting the objects for scratches, cracks, wear, and checking 

surfaces for proper finish, roughness and texture. This type of inspection is used in textile, wood and 

metal industries by employing vision systems for fault detection and quality verification [7][8][9]. 

Inspection of dimensional quality includes checking whether the dimensions of an object are within 

specified tolerances or the objects have the correct shape. More precisely, the vision systems check 

geometrical characteristics of objects, such us dimensions, shape, positioning, orientation, alignment, 

roundness and corners in two or three dimensions. Examples of inspection of geometrical characteristics 

are reported in [10][11][12]. Structural quality inspection includes checking for missing components, 

e.g., screws, rivets, etc., on assembled parts or checking for the presence of foreign or extra objects, e.g., 

leaves, little sticks, dust, etc. Examples of structural quality inspection are presented in [13][14][15]. 

Inspection of operational quality consists of verification of correct or accurate operation of the inspected 

products according to the manufacturing standards. Examples are described in [16][17]. 

There exist also all-in-one embedded machine vision solutions that integrate image capture and 

image processing together with built-in software to provide quality control and improved productivity 

for manufacturing operations [18]. Such solutions can be applied across a wide range of industries such 

us agriculture [10], automotive [19], and electronics [20].  

On the market, we can find several manufacturers that offer smart camera solutions for industrial 

usage. The companies Keyence, Cognex, National Instruments and Sick dominate the market of 
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commercially available smart cameras in terms of hardware solutions with implemented dedicated 

software. However, the majority of these solutions use its own hardware, which is based on the 

embedded x86 PC, with integrated commercial available CPUs (e.g. INTEL Atom x86). Consequently, 

these smart cameras are not offering the state-of-the-art performance regarding the computational 

performances and power consumption. 

The company XIMEA was the only company found at the start of the COPCAMS project (April 

2013), which was offering a commercial industrial smart camera embedded vision system, with both 

CPU and GPU cores on a single die. The company claims that their smart camera CURRERA-G by 

using GPU cores can deliver 90 GFLOPS of processing power. Furthermore, they offer application 

programming interfaces (APIs) for 30 of the most common image-processing libraries including 

OpenCV. 

At the start of the COPCAMS project, all implemented machine vision solutions in KTOR 

production facilities were PC-based. KTOR is using its own computer vision software called Kolektor 

Imaging Software (KIS), which is essentially a framework that combines specialized machine vision 

algorithms (operators) frequently used in commutator production. In addition, in KTOR production for 

non-complex machine vision inspections, smart cameras from companies like COGNEX are used. 

The next generation of smart camera systems including the embedded platforms from the 

COPCAMS project will enable the deployment of significantly improved computer vision algorithms 

enabling more accurate real-time inspection of products. Moreover, the network of cameras will enable 

improved inspection of products by taking into account the sequential nature of a manufacturing 

processes, and make it possible to analyze the (inter)dependencies of various steps of the process and 

the impact of the steps on the quality of the final product. Implementation of the proposed quality control 

system will result in higher quality of products and increased productivity. In addition, it will be possible 

to adapt the developed system for deployment on other production lines during or after the project. 

5.1.2 Object positioning task (GUT) 

During the research, it was observed that most of the applications and systems, which are considered 

as “intelligent surveillance systems” deliver common set of functionalities. The main goal of intelligent 

video surveillance is to extract useful information from video stream collected by cameras deployed in 

factories, at airports or any other place where video surveillance is being used. Intelligent surveillance 

systems deliver possibility of [28][29]: 

1. Multi-camera calibration 

Mapping different camera views to a single coordinate system. 
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2. Object re-identification 

Matching two image regions observed in different camera views and recognize whether they belong 

to the same object or not. 

3. Multi-camera tracking 

Tracking object across the field of view of different camera. 

4. Multi-camera activity analysis 

Recognition of activities of different categories and detection of abnormal activities in a large area 

by fusing information from multiple camera views. 

Intelligent surveillance systems are used in multiple places, where real-time alerts and the ability to 

search specific items, are based on their unique characteristic. Thus intelligent surveillance systems are 

popular in public places, such as train stations, airports, crowded streets and, on the other hand, such 

systems are used in industry. When considering market-ready device-embedded systems, it is worth to 

mention: 

IOImage released the IOIcam xptz100dn, an IP pan, tilt and zoom (PTZ) camera with autonomous 

tracking capabilities. Intelligent IOIcam is day/night, all-weather camera with embedded built-in 

analytics that delivers cost-effective intelligent solution. IOIcam is able to automatically detect, track 

objects such as vehicles, people etc. [30]. 

Agent Video Intelligence (Agent Vi) has completed the integration with Axis Communications' 

camera application platform and it’s available as an embedded solution. Agent Vi performs real-time 

analysis of the video stream captured by camera. On that basis it identifies and generates alerts for user 

predefined events related to people, vehicles and objects. Video-search capabilities enable rapid and 

effective retrieval, analysis and presentation of specific Video segments, events and data from vast 

amounts of recorded video [31]. 

Bosch IVA 4.0 is the security assistant system for indoor and outdoor use. IVA 4.0 detects, tracks 

and analyzes moving objects while suppressing unwanted alarms from spurious sources in the image. 

IVA 4.0 is an embedded system prepared in Dinion IP, Extreme IP, FlexiDome IP, and AutoDome IP 

cameras [32]. The system 

• detects idle/removed object, loitering, and linecrossing, 

• displays/detects object trajectories, speed, direction, heads and color, 

• optical flow detection of objects in a surveillance scened 
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• creates metadata for forensic searching of recorded video. 

It is observed that for industrial purposes intelligent surveillance video systems are integrated with 

RFID systems (1, 2, 3, 4). One of the first deployment of tracking system for industrial needs, based on 

RFID linked with CCTV, took place in 2006. Sony Europe (1) installed a monitoring system that helped 

reduce theft of warehouse goods, but also increased the efficiency of Sony’s shipping processes. The 

company installed the system at its largest European distribution warehouse in Tilburg, the Netherlands 

[33]. 

Nox solution (2), delivered by SimplyRFID, integrates video surveillance system with passive RFID 

tags. Nox searches video by location, camera, time, and RFID-triggered events. Video can be located 

when an RFID tagged item was seen in the video, when the item missing, when an item was checked 

in/out, or when an item caused an alarm. Nox plays video and shows all RFID tagged items in-view at 

time of the video being recorded, by each individual frame of the video. Video can be played forwards, 

backwards and in-real-time [34].  

GuardRFID delivers software applications, such as TotGuard™ Infant Security (3), integrated with 

Active RFID platform. Security and access control systems are enhanced by presenting a live video 

stream from a CCTV camera placed at the location associated with an alarm or warning event within a 

system, as well as providing video images of activity in that location immediately prior to the event. The 

alert (event) generated by the RFID tag is supported with a real-time video image and archived records 

to become an integral part of patient monitoring Instantaneous visibility of such activity allows staff to 

immediately respond to the event, saving precious time. All such video streams are captured and 

archived for subsequent review, if ever required [35].  

Within the scope of the project the two companies Dallmeier and initPRO (4) work on the integration 

of RFID data into video images for tracking flow of goods in warehouse. Data which are transmitted by 

the RFID tag such as date, time or serial number can be integrated into the video image. For this purpose 

the RFID reader sends data to the Dallmeier recorder via Ethernet. The data is then displayed within the 

management software PView, either in or next to the video image [36]. 

Intelligent surveillance video integrated with RFID technology is not commonly used solution in 

industry. On the other hand, the Sony case shows that it can reduce financial losses as well as improve 

operational efficiency. RFID technology in the presented examples is used to track objects and assets, 

based on passive tags. COPCAMS uses active RFID to provide close to real-time information about 

assets’ localization. Integration of optical methods of object tracking with active and passive RFID 

tracking allows computer vision algorithms to identify and locate tracked assets and gives an opportunity 

to increase the reliability and accuracy of the whole positioning system, especially in industrial 

environments where localized objects cannot be present in the line of sight. What also makes a difference 
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is that in the presented examples (1, 2, 3, 4) processed localization, visual and radio data are collected 

in the computational server. COPCAMS allows to deliver the same value, based on a distributed system 

of Smart Cameras with RF sensing capabilities, where information is processed on the device. Such an 

approach allows to scale the surveillance system by simply adding new Smart Cameras with RF sensing 

capabilities without investing in increase of existing computing power infrastructure. Additionally, as 

Smart Cameras with RF sensing capabilities can cooperate, with increasing number of devices the 

overall positioning performance can increase (depending on devices placement and environmental 

conditions). Integration of camera with efficient mSoC allows for removal of band consuming, time and 

energy inefficient process of encoding, transfer and decoding video data, which is necessary when high 

quality video data has to be processed on an external server. Combination of possibilities of video and 

various radio frequency techniques allows for adjustment of Smart Camera with RF sensing capabilities 

system to end-user needs.   

5.1.3 Augmented reality task (TED) 

There are few experiments exploring the use of augmented reality on industrial applications, but to 

the best of our knowledge no commercial developments are available. As the main limitation, all depend 

on heavy computing equipment, making them unpractical for field deployment. An example proposal 

can be found at http://monet.cs.columbia.edu/projects/armar/. 

5.1.4 Robot tracking task (UC) 

In the recent years, there has been a growing interest in the systems and products related to the 

location of objects in three dimensions (3D). The sectors covering this technology are very broad, such 

as robotics, medicine and games, among others. 

To know the precise position of an individual, the systems may be based on the use of cameras, 

optical sensors, accelerometers, gyroscopes, GPS, etc. In the event that vision systems are used, it is 

necessary to perform a pre-processing of the region of interest where the individual is located using 

imaging algorithms that detect corners, edges or reference markers; then, with these data is possible to 

obtain the real 3D coordinates of the environment.  

One of the problems that have been found in other studies [38] when using markers, is light in the 

environment where the images will be taken. The points to be detected in the scene may be lost because 

of the darkness. This limits the applications that use this system indoors. Furthermore, the use of contrast 

enhancement algorithms and specific markers stored in a database is required, which substantially 

increases the computing time of these systems. In addition, it limits significantly the distance between 

printed markers and the system user, unless its size is large enough to be captured by the image sensor. 

To solve this problem, light markers working in the visible or infrared spectrum can be used, such as 
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light emitting diodes or lasers. In some cases [39], light sources with varying luminance or pulsed light 

have been proposed which can cause synchronization failures. Still, the use of luminous markers can 

pose problems, particularly in environments where light sources with much higher luminance than the 

marker itself (in the worst case, sunlight) or sources emitting radiation in the same direction are present. 

In such situations, the image sensor is not able to differentiate one light source from another, so it will 

force, as was previously the case, to use this technology in bright environments without big light sources 

in it. Therefore it will be necessary to introduce element positioning systems that prevent light conditions 

affecting an environment so significantly. 

In the article [37] it is proposed to incorporate infrared luminous markers on a tape on the head user. 

To do this, they put on the scene two independent cameras, which require a synchronization process to 

make the shot simultaneously, located at a distance equal to the length of the wall of the room where 

tested. The algorithm used to make an estimate of the position is based on stereo correspondence. One 

of the drawbacks is that it cannot be implemented for augmented reality systems or simulated, because 

the cameras do not show what the user sees, besides being restricted to indoor environments with limited 

dimensions. 

Other studies as "Tracking of user position and orientation by stereo measurement of infrared 

markers and orientation sensing" (M. Maeda, et al., Proceedings of the 8th International Symposium on 

Wearable Computers (ISWC'04), 2004) raises the use of infrared markers located on the wall of a room, 

to locate the user. Specifically, they propose the use of two types of markers: actives and passives. The 

active markers are formed by a set of three infrared LEDs and a signal transmitter that sends data from 

its actual position to a decoder that the user carries, so once the detected know their absolute position. 

The passive markers are only one source of infrared light, from which it obtains the relative user 

position. In addition to relying on receiving signals from active markers, it calculates the relative 

distance from stereo vision. Using this technique, as occurred in the cases discussed above, it is restricted 

to indoor use. 

There are other methods that do not require direct vision of one or more cameras with reference 

markers for locating and tracking individuals. The RF techniques involve measuring distances, from 

static or moving objects, by emitting electromagnetic pulses that are reflected on a receptor. These 

electromagnetic waves are reflected when significant changes in atomic density between the 

environment and the object, so that works particularly well in cases of conductive materials (metals). 

They are able to detect objects at greater distances than other systems based on light or sound; however 

they are quite sensitive to interference or noise. It is also difficult to measure objects located at different 

distances from each other to the transmitter, because the pulse frequency will vary (slower the farther 

and vice versa). However, there are experimental studies which are able to demonstrate its use to 

estimate the user location with a high level of accuracy. 
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Another example of existing solutions are the LIDAR systems, which calculate the distance through 

the time taken for a light pulse to be reflected on an object or surface; using a device with a pulsed laser 

such as a light emitter and a photodetector as a receptor of the reflected light. The advantage of these 

systems is the accuracy achieved over large distances (using lasers with wavelength > 1000 nm) and the 

possibility of mapping large area lands by scanning light pulses. The disadvantages are that it is 

necessary to analyze and process each point, and the difficulty of automatically reconstruct three-

dimensional images. 

5.2 Targets at project end 

5.2.1 Quality control tasks (KTOR, JSI) 

The selected field tests will be implemented in KTOR facilities. Field tests will be installed at the 

production line at different production phases of the graphite commutator. Dedicated software and 

hardware (automatization, manipulation) for each field test will be developed. The overall objective of 

quality control tasks is to develop applications for quality control of the specific production processes, 

which will be able to detect defects on the commutators during the production. In order to validate the 

solutions developed during the COPCAMS project, the field tests will be running for a longer period 

(e.g. 3 months). 

5.2.1.1 Objectives and goals 

Objectives and goals for a quality control tasks can be divided to COPCAMS project objectives and 

applications/field tests specific objectives.  

COPCAMS project: 

• Cost reduction of the machine vision systems in comparison to the current PC-based 

systems used in KTOR (less expensive hardware, no additional licensing needed, and 

consequently enabling implementation of the quality control in every phase of the 

production process) 

• Reduced power consumption for automated visual inspections by 50% (replacement of 

currently used PC-based machine vision systems with the COPCAMS solutions) 

• Shortening the development cycles of complex machine vision projects by 15 % (due to the 

reusable hardware and the methodology developed during the project) 

• Self-adaptivity (learning on newly collected data) 

 

 



Public Version COPCAMS Cognitive & Perceptive Cameras 

ARTEMIS-JU – GA n°332913 71 2016-01-05 16:08 

Application specific objectives: 

• Achieving of acceptable classification accuracies according to the prescribed tolerances 

(confusion matrix of the deployed classification model) 

• Reduction of product rejection rate, resulting in savings in material and energy 

• Higher quality of manufactured products 

5.2.1.2 Evaluation and evaluation strategy 

Each objective will be measured and evaluated during the implementation of the field tests. From 

the application point of view, the main success criterion for acceptance of the developed 

algorithm/application will be quality-control accuracy. 

5.2.2 Object positioning task 

The system will be installed and tested in KTOR facility placed in Idrija, Slovenia. Smart Cameras 

with RF sensing capabilities and other sensors will be deployed. It is planned to conduct a series of 

testing sessions. During the tests, functionalities of system of Smart Cameras with RF sensing 

capabilities will be validated, while the system will provide close to real-time information about assets 

positions. 

5.2.2.1 Objectives and goals 

Objectives and goals for a quality control tasks can be divided to COPCAMS project objectives and 

applications/field tests specific objectives.  

COPCAMS project objectives: 

Use of embedded computing platform (TI KeyStone 2) in the system that is being developed allows 

to eliminate the bandwidth, energy and time cost associated to process of encoding, transmission and 

decoding of  video data that is necessary if video data from IP cameras is processed on central server 

like in systems that were available at the start of the project. 

Application specific objectives: 

During the field tests, the system will provide close to real-time localization of predefined assets. 

This information will be provided to KTOR facility employees. 
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5.2.2.2 Evaluation and evaluation strategy 

COPCAMS project objectives: 

The amount of data that is sent from camera to the server that is storing calculated positions will be 

measured in two scenarios. For each of the scenarios the same combinations of video parameters, such 

as resolution and FPS, are planned to be tested. In the first scenario, after triggering positioning process, 

the IP camera will send the video data to the server where Computer Vison algorithms will be 

implemented and the position of active RFID tag will be calculated. The process will be repeated for 

each configuration and after each of procedures the amount of transferred data will be determined. In 

the second scenario, after triggering the positioning process, the smart camera will process video data 

and send information about the calculated positon of active RFID tag to the server. As before, the amount 

of transferred data will be determined for each configuration. After the measurements the amount of 

transferred data for each configuration in both scenarios will be compared.  

Application specific objectives: 

The measure of success will be the amount of successfully localized objects with satisfying accuracy 

and delay of the whole localization process. The accuracy of the system will be dependent on quality of 

calibration, number and placement of Smart Camera with RF sensing capabilities devices that will be 

deployed in T5.2 demonstrator.  The target average localization error is expected to be less than 3 m for 

measurements in the most challenging case when the tag that is expected to be localized is not in the 

line of sight of any of the cameras and only RF information is available. Moreover, KTOR facility 

employees will provide the overall impression of system’s performance. 

The main strategy of system evaluation will be location measurements of objects in predefined 

locations. Due to the fact that measurement of many objects at the same time and comparing with 

simultaneously gathered real positions measurement is difficult, the proposed strategy will be applied. 

Objects will be placed in predefined locations and the measurement process will be triggered. After the 

finish of each localization process, the estimated location will be compared with real location and the 

localization error will be calculated. Also for every localization process, the delay between localization 

trigger and delivery of result will be measured. 
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5.2.3 Augmented reality task (TED) 

The objectives of the virtual reality demonstrator can be divided in two categories. On the one hand 

we have the objectives from the technological point of view: 

• Take full advantage of HW 

COPCAMS provides a low power, reduced cost, high performance image processing 

platform that leverages the capabilities of the virtual reality application being developed by 

TED. The implementation of multi CPU and GPU optimized algorithms will allow to take 

full advantage of the hardware capabilities. 

• Portability 

Although external causes have forced TED to leave the STORM platform and move to a 

non-portable platform, portability is still a key factor for TED.  The use of COPCAMS 

technologies ensures an easy path towards future portable solutions. 

On the other hand we have the objectives from the usability point of view: 

• Latency of the video-feed 

Low latency of the video-feed is needed to achieve a virtual reality experience. Moderate 

latency causes eye fatigue and motion sickness. High latency dramatically degrades the 

virtual reality experience making the system unusable. TED expects to achieve the required 

low latency thanks to the COPCAMS technologies. 

• Latency of the object recognition middle-ware 

Object recognition requires intensive processing and might affect the video-feed latency in 

several ways. It seems reasonable to use less frames per second for object recognition than 

for the video-feed. The final application must take this into account, decouple both 

elements, and find an equilibrated balance that optimizes usability. 

• Overlay quality 

The user interface should be intuitive, provide clear information and be easy to interact with. 

• Object recognition success 

The recognition of objects has to be reliable and provide a low rate of false positives and 

false negatives. 

Further details about objectives and field tests related to the augmented reality demonstrator can be 

found in D1.4. 
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6 Current state of the demonstrator 

6.1.1 Quality control tasks (KTOR, JSI) 

Dimensional measurements task 

A dedicated machine vision algorithm has been ported to the Nvidia Jetson platform and tested on 

the offline captured images. To enable an operator on the production line to observe results of the current 

inspection, a GUI application was built. The initial results (detection rate) obtained in the laboratory are 

satisfactory, however the final evaluation of the success criteria will be possible after the implementation 

of the system on the KTOR production line. Implementation of the system will start in M31 and will be 

finished before the end of M36. 

Quality inspection of copper-graphite soldering 

Basic machine vision algorithms for detection of the defects in the soldering process were ported to 

the Nvidia Jetson platform. Tests on the larger acquired dataset of images were performed. Some product 

defects are detected very successfully, while some (deficit of solder) will need additional tuning. In 

addition, a lot of effort is currently invested in building of the mechanical manipulator, which will enable 

implementation of the system on the production line. Implementation of the system will start in M32 

and will be finished before the end of M36. 

Measurement of the commutator mounting holes roughness 

Machine vision, machine learning and optimization algorithms were ported to the Nvidia Jetson 

platform (OpenCV and CUDA). The first version of the application for roughness measurement was 

built and tested on the offline captured dataset of images. In order to improve the assessment of the 

mounting hole roughness, some additional tests will be performed (optimization of the machine learning 

algorithm parameters). Implementation of the system on the production line will be performed within 

the following months. 

6.1.2 Object positioning task (GUT) 

Early prototypes of all system components described in Section 3.2 (Object positioning task) are 

developed or are very close to their final version. More detailed information about the actual state of the 

algorithms and hardware are available in deliverables D3.6 and D4.4. The first demonstration of an early 

system prototype that will show the basic system functionality is planned for the second COPCAMS 

review in Gdansk. 
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6.1.3 Augmented reality task (TED) 

The cameras and the virtual reality headset used in the prototype have been integrated and tested.  

A parallelized version of the distortion correction and image rectification algorithms is ongoing. It 

is expected to be finalized in the following weeks and reported in D3.4. 

The object detection algorithms still require further refinement. The optimization of the algorithms 

to the COPCAMS platform will begin once their development is finalized. 

 

7 Conclusion 

In this deliverable, we summarized the demonstration tasks and provided specifications in advanced 

manufacturing applications in the COPCAMS project. We provided a detailed description of the 

demonstration tasks that will be implemented during the project. Demonstration tasks form four 

different areas as specified (field tests and prototype demonstrations): quality control tasks, RFID 

tracking task, augmented reality task and robot tracking task.  

Each use case (field test or prototype) will validate and demonstrate the technologies developed 

during the project. The methodology, architecture and initial results of experiments are presented in this 

deliverable, however the detailed analysis of the evaluation results will be presented in deliverable D5.5 

Advanced Manufacturing Applications Report at the end of the project and will be based on the success 

criteria defined in the document D1.4. 
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