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1 Introduction 

This document reports the demonstration activities to show the effectiveness of COPCAMS solu-

tions for the large area surveillance applications. The demonstration activities was performed in two 

categories, i.e., a field test and laboratory experiments.  

The aim of Large Area Surveillance Application field test is to effectively monitor large areas with 

multiple cameras and extract meaningful information about the monitored area such as locating and 

classifying the moving object(s). The moving objects in the monitoring area are classified as ‘human’, 

‘vehicle’ or ‘other’ based on either only the view captured by the camera at the central station or all the 

views available, i.e., views of the end node cameras in addition to the one at the central station. 

2 Demonstration Performance Results 

2.1 Field Test 

This section describes the field test scenario for “Large Area Surveillance Application” that is based 

on the requirements given in “D1.1 & D1.2 – Summary of Functional & Non-Functional Description” 

and use cases defined in “D1.4 – Summary of Use Cases and Field Test Definition” documents. The 

evaluation strategy and measurements to be collected are also described in this section. 

ASELSAN developed algorithms regarding the detection and classification of objects in an area of 

interest that is monitored by single camera. In this section, we first summarize the proposed approach 

for the field test and define test scenario applied for performance evaluations. Then we define the per-

formance evaluation metric that are measured in the test scenario. We finalize this section by given the 

measured test results. 

2.1.1 Proposed Approach 

In the field test of Large Area Surveillance Application, we concentrate on an approach with the 

following properties: 

 Objects are not tracked, instead; the video stream is split into several spatio-temporal vol-

umes named “cell”s of a pre-specified size, i.e., m x n x T, where m: cell row size, n: cell 

column size and T: memory. Here, the cells can be chosen overlapping or non-overlapping. 

In the preferred implementation, we opt to have the cells to overlap in order to sufficiently 

cover a target activity. 

 At every t’th frame during the data stream, each cell declares a result of that 

o An activity exists 

 Activity corresponds to a “human” /”vehicle”, 
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 Activity corresponds to a rare/abnormal activity: “other” 

o An activity does not exist. 

 Unsupervised: the algorithm expects no classification input from the user to facilitate the 

task. However, a supervised framework can be also used, in case of which; the developed 

algorithm would be slightly modified.     

 No correlation model among cells is assumed or learned, i.e., they are processed inde-

pendently. Hence, the cell processing is strongly parallelizable. 

 Two phases: training and operation. In phase of the training, the algorithm is fed with data 

and let learn its parameters. 

Based on this approach, we develop and propose an algorithm, which detects an object and classifies 

it as “human”, “vehicle”, and “other”, where the class of “other” is defined as any abnormal activity. 

The proposed algorithm consists of the phases training and operation. Before we explain the details of 

our algorithm, we point out that in both of these phases, the video is transformed into a feature space. In 

the following, we explain the details of this transformation. 

Feature Extraction: For a given video stream V(1:M, 1:N, 1:T) whether in the training phase or 

operational phase, where M is the frame row size, N is the frame column size and T is the length of the 

stream (possibly infinite), 

 For each frame, the image gradients Ix, Iy and motion flow Jx, Jy are first calculated.  

 Then at each t’th frame V(1:M,1:N,t) and for each cell, i.e., for all cells v(k1, k2)=V(k1i+1: 

k1i+m, k2j+1: k2j+n,t)’s with k1 and k2 spanning all possible cells, where i and j are deter-

mining the overlapping amounts of these cells in the row and column, respectively, 

o For every moving pixel in v(k1, k2), i.e., a pixel that has a sufficiently large motion 

magnitude, the descriptor a=[x,y,t,|Ix|,|Iy|,sqrt(Ix^2+Iy^2),|Jx|,|Jy|, 

sqrt(Jx^2+Jy^2)] is computed, where (x,y,t) is the coordinate of that pixel with re-

spect to the centroid of the moving blob in that cell.  

o Based on this computed descriptor, a feature vector (61 dimensional) 

f( k1, k2,t) = [corr(a), var(a), imgrad_hist, optflow_hist ] (all vectorized) is com-

puted. Here, corr(a) is the normalized correlation matrix of the descriptor within 

the cell, var(a) is the corresponding variance, imgrad_hist is the undirected his-

togram vector of the image gradients within the cell and similarly; optflow_hist 

is the undirected histogram vector of the optical flow vectors within the cell. 

Here, we use 8-bin undirected histograms.  

Training Phase: Let T1 (finite) be the length of a provided training video, then once all the features 

vectors are computed for each cell,  
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 A training data set of f(k1, k2,t)’s for all k1, k2,1<t<T1 is obtained as the collection of the 

feature vectors obtained from all cells across the training video. 

 Then, an anomaly detection algorithm is applied to extract the nominal/typical activities. 

 The nominal activities are then clustered into a sufficiently large number of clusters.  

Extracting the Nominal Statistics in the Training Phase: Let S = {x: x = f( k1, k2,t) for all k1, 

k2,1<t<T1} be the training set of data obtained from a given T1-length training video which does only 

include the nominal activities, i.e., only human and vehicle observations can exists in S. Then x follows 

an unknown nominal density x~pX, whereas the class of “other” is assumed to be drawn from a uniform 

density sharing the same support with pX. Based on this, we formulate the detection of the “other” 

objects as an anomaly detection problem under these density assumptions such that when given a test 

instance, the anomaly detection (detection of “other”) probability is maximized with a pre-specified 

constant false alarm rate. To this end, using the training data S, the sufficient statistics regarding the 

nominal density pX are extracted.  

To be more precise, a score value l(x) is assigned to every training instance x in S, which is defined 

as 





xySy

KK ydxd
S

xl
:

)()(
||

1
)(

, where )(xd K is the K nearest neighbor of x in S. Here, the score 

value l(x) can be regarded as the popularity measure estimating the corresponding density level of x on 

pX. Since we assume that the anomalous objects follow a uniform density, the detection rate is known 

to be maximized when the )1(  rate of the nominal activity is covered in a minimum volume set, 

where  is the desired constant false alarm rate. This minimum volume set is precisely estimated in the 

asymptotically consistent sense by the introduced score values l(x) [1]. For an example, if a test instance 

x is declared as anomalous/other whenever )(xl  , the detection probability of the anomalous/other 

objects is maximized with a constant false alarm rate  In the Figure 1 (taken from [1]), we illustrate the 

output of this anomaly detection approach on a simple 2-dimensional data set. 
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Figure 1: The output of the anomaly detection approach on a simple 2-dimensional data set [1]. 

Clustering the Nominal Activity in the Training Phase: We note that when the described anomaly 

detection algorithm is applied on the training data, the typical/nominal activities, consisting of human 

and vehicle observations in the context of COPCAMS, are obtained. In order to separate these human 

and vehicle observations from each other and further discover the sub-classes, we propose a novel clus-

tering algorithm based on the score levels that are defined and used in the anomaly detection approach. 

Since the proposed clustering algorithm similar to the well known mean-shift approach in spirit, we 

name it as the “score shift” algorithm. However, in contrast to the mean-shift algorithm, the proposed 

score shift clustering generates clusters with feasible cluster centers. Namely, the cluster centers are real 

observations in a sense that they cannot be a mixture of, for instance, a vehicle and human observation 

as in the case of mean-shift. This allows us to assign an instance the label of the corresponding cluster 

center as vehicle or human. This would not be possible with the mean shift. Moreover, the phase of 

clustering and equivalently classification of the data is computationally only dependent on the outputs 

of the anomaly detection approach that are computed a priori, which makes it extremely fast and efficient 

with no or very little further computations.   

Score Shift Clustering in the Training Phase: Note that for every training instance x in S, we have 

a score value l(x). Then the proposed score shift algorithm works as follows: Starting from x, a walk is 

designed such that the first step of this walk is from x to its nearest neighbor y in S such that l(y)>l(x). 

Then we take the second step from y to z, and the third step from z to another and so on. This procedure 

is guaranteed to converge an element in S, which is then assigned as a representative for x. Repeating 

this procedure for every instance x, we immediately obtain a clustering of the training data, with feasible 
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cluster centers. In Figure 2, we illustrate an example of score shift clustering. In this example, we project 

the described 61 dimensional observations into the principle eigenvectors corresponding to the largest 

two eigenvalues.  

 

Figure 2: An example illustration of score shift clustering. 

As shown, the proposed clustering method is able to discriminate the two nominal activity of human 

and vehicle with several other sub-clusters. 

Operational Phase: In the operational phase, again, the feature vector defined above is computed 

for each cell. Then for a cell, this feature is tested whether it is a nominal activity. If it is found to be 

not-nominal, then “other” is declared. If it is found to be nominal, then it is clustered with respect to the 

determined clusters in the training phase. Then, if the found cluster includes a human activity “human” 

is declared; otherwise, “vehicle” is declared.  

Remark: We emphasize that a manual inspection of the training results is required to determine 

which cluster corresponds to human and which corresponds to vehicle, which is far more practical com-

pared to the supervised methods. Moreover, this explicit labeling might not even be necessary.   

Remark: Using the standard Euclidean distance between correlation matrices in clustering the train-

ing data might not be suitable. In this case, a specific distance transformation can be utilized. 

2.1.2 Test Scenario 

The field test is performed in a test area in ASELSAN’s facility with the test setup illustrated in 

Figure 3. In this setup, there are two fixed wide field of view (FOV) cameras and one narrow FOV Pan 
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Tilt Zoom (PTZ) camera located on the surface of the building in the test area. The setup parameters of 

the cameras are given in Table 1. In demonstration, Samsung SNP-3120VH camera is used, whose 

specifications are listed in Table 1.  

We test our single camera solution on a scene, where the usual activities are automobiles are enter-

ing/ leaving the scene with varying speeds as well as casually walking pedestrians. The proposed method 

has been trained on six different sequences including only the usual activities and tested on three se-

quences, which additionally include a vehicle (to simulate an anomalous, i.e., ``other” type of an activ-

ity) that is a van.  

 

Figure 3: The illustration of test setup for Large Area Surveillance Application filed test 

Table 1: The setup parameters of the cameras that are illustrated in Figure 3. 

Camera Type FOV Relative Positions Rotation 

 X Y Z Azimuth Elevation 

Fixed Horizontal: 

54.44˚ 

Vertical: 

42.32˚ 

10 0 7 0 -10 

PTZ Horizontal: 

4.62˚ 

Vertical: 

3.58˚ 

0 0 0 0 -10 

 

Table 2: The specifications of Samsung SNP-3120VH camera 
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Camera Parameter Value 

Video 

Imaging De-

vice 

1/4" Ex-view HAD PS CCD 

Total Pixels  NT : 811(H) x 508(V), PAL : 795(H) x 596(V) 

Effective Pix-

els  

NT : 768(H) x 494(V), PAL : 752(H) x 582(V) 

Scanning 

System  

Progressive(VPS ON) (If WDR on, Interlaced Scan) 

Frequency  NT : H : 15.734KHz / V : 59.94Hz, PAL : H : 15.625KHz / V : 

50Hz 

Horizontal 

Resolution  

Color : 600 TV lines 

Min. Illumi-

nation 

 

Color : 0.7 Lux (F 1.65, 50 IRE, VPS OFF), 0.001 Lux (Sens up 

512X) 

B/W : 0.07 Lux (F 1.65, 50 IRE, VPS OFF), 0.0001 Lux (Sens up 

512X) 

S / N Ratio  50dB 

Video Out  CVBS : 1.0 Vp-p / 75Ω composite 

Lens 

Focal Length 

(Zoom Ratio) 

 

3.69~44.32mm (12X) 

Max. Aper-

ture Ratio  

F1.65(Wide) / F2.01(Tele) 

Angular Field 

of View  

H : 54.44˚(Wide) ~ 4.62˚(Tele) / V : 42.32˚(Wide) ~ 3.58˚(Tele) 

Min. Object 

Distance  

0.2m (Wide) / 0.8m (Tele) 

Lens Type  DC Auto Iris 

Pan / Tilt / 

Rotate 

Pan Range  360˚ Endless 

Pan Speed  Preset : 650˚/sec, Manual : 0.05˚/sec ~120˚/sec (Turbo:200˚/sec) 

Tilt Range  -5˚~185˚ 

Tilt Speed  Preset : 650˚/sec, Manual : 0.05˚/sec ~120˚/sec 

Network 

Ethernet  RJ-45 (10/100BASE-T) 

Video Com-

pression 

Format 

H.264, MPEG4, MJPEG 
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Resolution 

 

NT : 704x480, 640x480, 352x240, 320x240 

PAL : 704x576, 640x480, 352x288, 320x240 

Max. Framer-

ate  

NT : 30fps / PAL : 25fps 

Video Qual-

ity 

Adjustment 

 

H.264/MPEG4 : Compression Level, Target Bitrate Level Control 

MJPEG : Quality Level Control 

Bitrate Con-

trol Method 

 

H.264/MPEG4 : CBR or VBR 

MJPEG : VBR 

Streaming 

Capability  

Multiple Streaming (Up to 10 Profiles) 

IP  IPv4, IPv6 

Protocol 

 

TCP/IP, UDP/IP, RTP(UDP), RTP(TCP), RTSP, NTP, HTTP, 

HTTPS, SSL, 

DHCP, PPPoE, FTP, SMTP, ICMP, IGMP, 

SNMPv1/v2c/v3(MIB-2), ARP, 

DNS, DDNS 

Security 

 

HTTPS(SSL) Login Authentication 

Digest Login Authentication 

IP Address Filtering 

User access Log 

Streaming 

Method  

Unicast / Multicast 

Max. User 

Access  

10 users at Unicast Mode 

Web Viewer 

 

Supported OS : Windows XP / VISTA / 7, MAC OS 

Supported Browser : Internet Explorer 6.0 or Higher, Firefox, 

Google 

Chrome, Apple Safari 

Central Man-

agement 

 

Software 

NET-i viewer 
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2.1.3 Evaluation & Measurements 

The described scenario in Section 2.1.2 page  11 takes place outdoor under ‘sufficient’ and ‘stable’ 

day light or artificial illumination with enough lux percentage, in addition to that no background change 

is allowed to happen, e.g., an object of the background such as a parked bicycle is assumed to stay in its 

place with no motion throughout the scenario. We assume that the system is correctly installed to cover 

the monitoring area and the cameras are calibrated. 

Under these conditions, the following metrics are measured for the performance evaluation.  

 Detection Rate: For an evaluation of the first step in the single camera solution, i.e., the 

“other” / “anomaly” detection step, the detection rate of anomalies is measured at a given 

range of bearable false alarm rates.  

 False Alarm Rate: For an evaluation of the first step in the single camera solution, i.e., the 

“other” / “anomaly” detection step, the false alarm rate of anomalies is measured at a given 

range of desired detection rates.  

 Classification Accuracy: In the set of observations that are labeled as “nominal”, i.e., “not 

anomalous” or “other”, the accuracy for the task of “human” vs “vehicle” classification is 

measured.  

 Total Transmission Bandwidth: For an evaluation of communication overhead in distrib-

uted surveillance architecture, the total transmission bandwidth for a unit time or unit event 

is measured.  

2.1.4 Results 

We train the proposed single camera algorithm on 6 video sequences and test on 3 different test 

sequences (several snapshots of which can be found below) with the following system parameters, where 

the actual values that we use in our implementation are stated within parentheses. 

 vt, (M,N,Zf ): The proposed algorithm operates on an input video sequence vt, whose frames 

are M × N (576x704) and Zf (739) is the length of the sequence that can be possibly infinity. 

 (Mb,Nb,Zb): We process the input vt block by block, where each block is a video chunk 

whose frames are Mb ×Nb (144x176) and Zb (10) is the length of the block sequence that 

is finite. The blocks are placed on a rectangular grid on the imaging plane. 

 (βM, βN): The amount of overlaps between blocks. The right/left neighbor of a block is 

βMMb/βNNb (βM=βN=0.5) pixels away on the right/left direction. 

 τv, τvc: τv (0.5) is the threshold for determining the significant motion magnitudes both in 

declaring activity for a pixel and creating the motion histogram. τvc (5) is the threshold for 

consistency for a block activity in time. 
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 τI : This is the threshold (20) to determine the significant image gradients in calculating the 

histogram of gradients. 

 νa, νb, νac: νb (0.5) is the border threshold for determining the center of a block that scales 

the spatial dimensions of a block. νa (0.03) is the frame level activity threshold for a block 

and νac (0.5) is the activity consistency threshold for a block in time. 

 K: This is the size of the neighborhood (10 x log10 x total number of features ). 

 τFA : This is the false alarm rate in declaring anomalies (0.005). 

Note that we skip the details of the parameter selection of the Lucas Kanade (LK) optical flow 

algorithm, since it is not a focus of this study. In fact, any other algorithm extracting the motion field 

can replace the LK algorithm. 

In the first and second test sequences, we simulate an anomaly as a van passing through the scene 

which is an ``abnormally” large vehicle compared to the other vehicles included in the training se-

quences; except that in the third test sequence, there is no anomalous activity. Hence, in the third se-

quence, we only have a human vs vehicle classification task.  

Recall that for every block, we first declare an anomaly decision as anomalous vs nominal; and if 

found anomalous, we declare a second decision stating the classification of the observed activity. There-

fore, in order to measure the anomaly detection rate, we compute the rate of anomaly decisions for the 

blocks extracted from the van (the anomalous vehicle in the first and second test sequences). As for the 

false alarm rate, we compute the rate of anomalous decisions for the blocks extracted from the other 

activities (not from the van). 

In order to measure the classification accuracy, for every nominal block that is also truly labeled as 

nominal, we compute the rate of accuracy for the declared human vs vehicle classification. 

 

 

 

 

 

The following table summarizes our findings in the test sequences. 

Table 3: The test results 
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 Detection Rate False Alarm Rate Classification Accuracy 

Test Sequence-1 65 % 0 % 94 % 

Test Sequence-2 98 % 4 % 100 % 

Test Sequence-3 -- -- 100 % 

 

As for the total transmission bandwidth in a distributed processing scenario, we emphasize that each 

agent (node or processing unit) should communicate the 61 dimensional feature vectors with each other, 

where a feature vector is computed for each block. Therefore, for instance in the test sequence-2 that 

includes a relatively crowded scene with multiple vehicles and humans, since we process approximately 

0.1 block per frame, the total transmission burden is approximately calculated as (if each feature is 

``double” requiring 64 bits in the worst case; not that less number of bits can also be used to encode 

each feature) 0.1x61x64= 390 bits per frame, which roughly correspond to only 48 ``int8” pixels per 

frame. Here, if each feature is encoded using 16 bits (which is sufficient for most of the practical cases), 

the required bandwidth turns out as low as 12 pixels per frame.    

In the following we present several snapshots obtained during the operational phase: 
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Figure 4: A usual human activity observation 
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Figure 5: An anomalous activity observation 
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Figure 6: A usual vehicle activity observation. 
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2.2 Lab Experiments 

2.2.1 Multi-target Detection and Tracking Experimental Setup 

2.2.1.1 Motivation 

The aim of this work is to parallelize the Probability Hypothesis Density Particle Filter 

(PHD-PF) [29] on NVIDIA Jetson TK1 to achieve a runtime performance of 15 frames-per-

second (fps) for a set of given detections. 

 PHD-PF is a probabilistic tracker that estimates the state of the targets (e.g. position, ve-

locity) using a posterior probability distribution. The posterior distribution is computed via the 

Bayes rule that employs a prior distribution (prediction) and a likelihood function (update). 

Each mode of this distribution models a likely target state. PHD-PF approximates the posterior 

distribution using Monte Carlo sampling with a finite number of samples (particles). This ap-

proximation uses a set of particle states and weights. The prediction is often calculated using 

an affine transformation and additive Gaussian noise to the particle states. The likelihood func-

tion computes the similarity among states and measurements (detections). The main difference 

among standard multi-target particle filters and PHD-PF is that the latter can predict the target 

cardinality over time, so that it is more robust in situations of noisy measurements. The predic-

tion of the target cardinality is formulated as an additional calculation before the weight update. 

In a nutshell, the PHD-PF target state estimation and tracking involves the following steps 

in a recursive way: i) particle state and weight prediction from k-1 to k, ii) weight update using 

detections, iii) resampling, iv) state estimation via particle clustering and v) association of esti-

mated states at k with states at k-1 to build trajectories. Because particle clustering may under- 

and/or over-estimate clusters, we use ad-hoc methods for cluster merge and split to refine the 

state estimation. Clustering is performed using Expectation-Maximization (E-M) as it can be 

initialized using the expected number of clusters and initial cluster states. 

2.2.1.2 Scenario definition 

We test and validate the performance of PHD-PF on NVIDIA Jetson TK1 using PETS2009-

S2L1 dataset (http://goo.gl/UNCCCl). The scene contains a minimum of three person targets 

and a maximum of six. Examples of tracking results are shown in Figure 7 and Figure 8. We use 

http://goo.gl/UNCCCl
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a person detector based on Histogram of Oriented Gradients (HOG) [30] that is provided in 

OpenCV in both CPU and GPU version. 

 

Figure 7: Tracking example obtained with HOG detector and PHD-PF on PETS2009-S2L1. 

 

Figure 8: Tracking example obtained with HOG detector and PHD-PF on PETS2009-S2L1. 

2.2.1.3 Parallelization procedure 

Profiling was performed on the PHD-PF using PETS2009-S2L1. The most computationally 

expensive function is found to be the E-M clustering. We opted for a GPU implementation and, 

because our PHD-PF is based on OpenCV libraries that do not offer the GPU implementation 

of E-M, we adapted a Matlab function for E-M based on CUDA libraries [31] to our NVIDIA 

Jetson TK1. 
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We then analyzed the code thoroughly and identified three hotspots that can be parallelized. 

We also tried the parallelization of other parts of the code but without success due to intrinsic 

dependencies of data. The parallelization is only possible when operations computed on a cer-

tain data set are independent. 

During parallelization it is important to evaluate whether the overhead cost of data manage-

ment to be distributed among different cores is greater or lesser than the actual computation 

cost if there were computed on a single core. Via experiments we observed that the overhead 

cost for these three functions plus their computation was less than the actual computation on a 

single core. Therefore, for these three hotspots, we used OpenMP libraries and distributed the 

computation among the 4 cores of Jetson CPU (ARM Cortex-A15). OpenMP uses the following 

pragma syntax to perform the parallelization 

#pragma omp parallel for num_threads(4) 

We observed that the specification of the number of threads is an important step. This is a 

way to force Jetson to use all its 4 cores. Otherwise the compiler would need to guess or inter-

rogate the system in order to retrieve the number of available cores, and if some of the cores 

are disabled for power saving reasons, the parallelization could be performed for less core (e.g. 

2). 

 

2.2.1.4 Evaluation strategy and measurements 

We evaluate the runtime performance of the PHD-PF with and without parallelization by 

averaging the results over 150 frames on PETS2009-S2L1. We show the results of five versions 

of the implementation namely: CPU (the original version), GPU only (with E-M CUDA ver-

sion), GPU + OpenMP 1 (with OpenMP applied to weight update), GPU + OpenMP 2 (with 

OpenMP applied to weight update and split cluster) and GPU + OpenMP 3 (with OpenMp 

applied to weight update, split cluster and resampling). We evaluate the performance of the 

tracker using the following accuracy measures: Multi-Object Tracking Accuracy (MOTA), 

Multi-Object Tracking Precision (MOTP), Precision, Recall and Identity Switches (IDS) [32]. 

As we can see from the results in Figure 9, the performance dramatically improves when the 

E-M clustering is implemented on GPU. The improvement goes from about 17 times, in case 

with 300 particles per target, to about 23 times in the case with 1300 particles per target. When 
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the CPU parallelization with OpenMP is applied the performance increase even more getting 

to about 28 times faster in the former case and about 48 times faster in the latter case. It is 

interesting to observe that the overhead cost tends to influence the performance lesser by in-

creasing the computation load given to both CPU and GPU. The performance is very close to 

our goal set at the beginning of the parallelization process (15fps) as we achieved about 14fps 

for the case with 300 particles. Table 4 shows the tracking accuracy at varying number of parti-

cles per target. 

2.2.1.5 Future developments 

We are working towards the real-time implementation of a full detection and tracking pipe-

line on an embedded platform (e.g. NVIDIA Jetson TK1). Our ultimate goal is to be able to 

achieve 15fps including the detection stage. 

 

 

Figure 9: Runtime performance (ms) with varying number of particles per target. 

 

Table 4: Tracking accuracy results with varying number of particles per target. 

# particles/target MOTA MOTP Precision Recall IDS 
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300 3.9 62.0 56.9 39.0 101 

500 3.7 61.5 56.5 38.5 93 

700 5.7 61.5 58.2 39.7 98 

900 7.5 61.7 58.6 41.2 83 

1100 10.3 61.6 60.9 41.2 80 

1300 11.4 61.9 60.7 43.3 70 

 

 

 

 

2.2.2 Distributed Detection of Events Based on WSN For Large Area Sur-

veillance 

2.2.2.1 Introduction 

In a previous deliverable, D5.1, CTTC proposed a system relying on a WSN, whose aim is 

to carry out a distributed detection of security events. The aim, of the contribution to this deliv-

erable D5.4, is to assess the performance of the proposed distributed event detection system. 

To this end, the objective is to assess the detection metrics, i.e. detection and false alarm rate, 

as a function of the system parameters and event parameters that have a direct influence on 

them. Moreover, the evaluation strategy described in D5.1 is taken into account to carry out the 

system performance evaluation. Namely, a twofold strategy is envisaged. First, the system will 

be evaluated in a simulated scenario. This permits to vary some parameters that have a direct 

influence on the performance, e.g. the amplitude of the event. This simulated scenario is fun-

damental to obtain a deep insight of the influence of the event and system parameters into the 

performance of the proposed detection system. The second scenario is a real scenario deployed 

in a lab environment, where the conclusions extracted from the simulated scenario must be 

validated. 
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2.2.2.2 Simulated scenario 

In this section we present the simulator that was implemented to assess the performance of the pro-

posed distributed detection system. Moreover, we extract conclusions related to the performance assess-

ment thanks to a campaign of numerical simulations. 

2.2.2.2.1 Description of the simulator 

We begin this section by recalling the proposed distributed detection system proposed in 

D5.1, as the simulator must emulate its behavior. In Figure 10 this system is displayed. It can 

be observed that it consists of a set of sensors which monitor an area under control and whose 

aim is to detect events that occur within this area. Each sensor is connected to a Zolertia Z1 

unit, which has processing and communication capabilities. The pair sensor and Zolertia Z1 

unit form what is called a WSN node in the sequel. Each WSN node takes a decision about the 

presence or absence of an event in a batch processing basis. That is, it considers a buffer of 

sensor measurements and then takes a detection decision. This procedure is repeated for each 

new buffer of sensor measurements. The detection decisions that the WSN nodes take at each 

buffer are sent to the fusion centre via a wireless single hop link, by means of an IEEE 802.15.4 

radio interface. The fusion centre is composed of a Z1 unit, which acts as a sink that permits to 

receive IEEE 802.15.4 packets and a Raspberry Pi 2. The Z1 unit is connected to the Raspberry 

Pi 2 via USB, whose aim is to gather the decisions of each WSN node and implement a fusion 

of detections algorithm which improves the individual decisions of the WSN nodes. Further-

more, the Raspberry Pi 2 module paves the way to communicate with other COPCAMS mod-

ules thanks to its USB, Wi-Fi and Ethernet ports.   
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Figure 10: Setup of the detection system based on sonar sensors. 

The simulator that pretends to model the event detection system exposed in Figure 10 con-

sists of the next functional blocks: 

1) Generation of the sensor measurements at each processing buffer. 

2) Event Detection at each WSN node. 

3) Computation of performance metrics for each WSN node. 

4) Fusion of detections algorithm. 

5) Computation of performance metrics after fusion algorithm. 

6) Plot of performance metrics. 

The functionalities implemented by those blocks depend on a set of system, event and per-

formance metrics parameters, which are listed in Table 5, Table 6 and Table 7, respectively. 

Next we proceed to explain in detail the functional blocks as well as the role of the parameters 

which model their behavior. 

 

Table 5: System parameters 

𝝈𝟐 Noise power at each sensor. 

M Number of sensors. 

k Parameter k of the k out of M fusion algorithm. 
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𝒉𝒊 Attenuation factor of event at the i-th sensor. 

hf Heuristic factor of the detection threshold at each sensor. 

N Length of the processing buffer. 

B Total number of processing buffers. 

𝒅𝒎𝒊𝒏 Minimum distance that sensors can measure. 

𝑷𝒆𝒗𝒆𝒏𝒕 Probability that an event is present at a given processing buffer. 

 

Table 6: Event parameters 

L Length of the event (at a given buffer) in samples. 

A Amplitude of the event (in cm). This is the amplitude that the sen-

sors should measure if there was not attenuation. 

 

Table 7: Performance metrics 

𝑫𝒔𝒊 Detection rate at i-th sensor. 

𝑭𝒔𝒊 False alarm rate at i-th sensor. 

𝑫𝒇 Detection rate after fusion algorithm. 

𝑭𝒇 False alarm rate after fusion algorithm. 

 

1) Generation of the sensor measurements at each processing buffer. 

The first task of the simulator is to generate the data measurements of each sensor which 

contain the noise plus event signals and which feed the detection algorithms at each WSN node. 

To this end, first a matrix W ∈ ℝMx(NB) is generated containing only noise. Each element of 

Wis assumed to be independent and identically distributed (in a statistical sense) and it is gen-

erated according to a Gaussian distribution with mean dmin and variance σ2. That is, the i-th 

row of this matrix contains all the samples of the experiment related to the i-th sensor, whose 

mean is the minimum distance that the sensor can measure and with a given noise power, to be 

specified below. 

Next, we have to generate the events. To this end, we assume that the presence or absence 

of an event at a given processing buffer is random. Namely, it is assumed that the presence of 

an event at a given processing buffer follows a binomial distribution, whose parameters are the 

probability that an event is present Pevent  and the probability than an event is not present 

1 − Pevent.  
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Regarding the n-th samples of the event signal x(n), it is assumed that it can be modeled as 

a rectangular waveform of length L, denoted by ΠL(n), and amplitude A 

𝑥(𝑛) = 𝐴𝛱𝐿(𝑛). 

The event measured at each sensor undergoes an attenuation, denoted by hi for the i-th sen-

sor. This attenuation is due to the wireless channel and the beam pattern associated to the sen-

sors. Thereby, the event signal measured at the n-th sample of the i-th sensor can be written as 

  𝑠𝑖(𝑛) = ℎ𝑖𝑥(𝑛) = ℎ𝑖𝐴𝛱𝐿(𝑛). 

Therefore, according to the above definitions, the samples measured at a given processing 

buffer of the i-th sensor are modeled as 

𝑦𝑖(𝑛) = 𝛽𝑠𝑖(𝑛) + 𝑤𝑖(𝑛) 

where 𝛽 = 1 with probability 𝑃𝑒𝑣𝑒𝑛𝑡, i.e. it models the presence or absence of the event at the 

current buffer. Moreover, according to the above explanations, 𝑤𝑖(𝑛)~𝑁(𝑑𝑚𝑖𝑛, 𝜎2)  is the 

noise.  

2) Event Detection at each WSN node. 

Given the signal measured at a given processing buffer, the task of the event detection al-

gorithm is to decide between the hypothesis that an event is present, denoted by H1, and the 

hypothesis that the event is not present, denoted by H0. According to the above definitions, 

these hypotheses can be expressed as follows at a given WSN node i, 

𝐻0: 𝑦𝑖(𝑛) = 𝑤𝑖(𝑛) 

𝐻1: 𝑦𝑖(𝑛) = 𝑠𝑖(𝑛) + 𝑤𝑖(𝑛) = ℎ𝑖𝐴𝛱𝐿(𝑛) + 𝑤𝑖(𝑛) 

Next, the detector considered to discern between these two hypotheses is explained. 

Heuristic threshold detector 

This type of detection algorithm is based on setting a heuristic detection threshold above 

the noise. That is, it decides H1 if any of the buffer samples is above the threshold. In the sim-
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ulator, the floor level is estimated during a training period at the beginning of the first pro-

cessing buffer. Namely, the mean μ = dmin and the variance of the noise σ2 are estimated by 

means of their sample estimators μ̂ and σ̂2, 

𝜇̂ = 𝑑̂𝑚𝑖𝑛 = ∑ 𝑦𝑖(𝑚)
𝑇

𝑚=1
 

𝜎̂2 = ∑ (𝑦𝑖(𝑚) − 𝜇̂)2
𝑇

𝑚=1
 

where T is the number of training samples. Thereby, the threshold, 𝛾ℎ, for the heuristic detector 

is given by, 

𝛾ℎ = 𝜇̂ + 𝜎̂ + ℎ𝑓 

Thereby, the detection algorithm is based on the next methodology, 

𝐼𝑓 𝑦𝑖(𝑛) > 𝛾ℎ 𝐷𝑒𝑐𝑖𝑑𝑒 𝐻1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑑𝑒𝑐𝑖𝑑𝑒 𝐻0 . 

3) Computation of performance metrics for each WSN node. 

In order to assess the performance of the detection methods, at each node, some metrics 

must be computed. In our context, these performance metrics are the detection rate and the false 

alarm rate. The detection rate is denoted by D and it is defined as 

𝐷 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑒𝑣𝑒𝑛𝑡 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (𝑤ℎ𝑒𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑒𝑣𝑒𝑛𝑡 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑤ℎ𝑒𝑛 𝑒𝑣𝑒𝑛𝑡 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡
. 

Regarding the false alarm rate, which is denoted by F, it is defined as 

𝐹 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑒𝑣𝑒𝑛𝑡 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (𝑤ℎ𝑒𝑛 𝑒𝑣𝑒𝑛𝑡 𝑖𝑠 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑤ℎ𝑒𝑛 𝑒𝑣𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡
 

4) Fusion of detections algorithm. 

This functionality in the real system is implemented in the fusion centre. This is a method 

that receives as inputs the detection decisions taken at each WSN node, for a given processing 

buffer, and it provides a single detection decision which must improve the individual decisions 

of each node.  
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The fusion algorithm considered herein is based on the k out of M fusion rule, which is a 

widely used methodology, see e.g. [21]. This method considers the M decisions taken by the M 

WSN nodes at a given processing buffer, where the decision of the i-th sensor is denoted by ui. 

It is assumed that ui = 1 means that the i-th WSN node detects an event, whereas ui = −1 

means that the i-th WSN node does not detect an event. The global decision, i.e. the decision at 

the output of the fusion rule, is denoted by u and the fusion rule decides u = 1 (i.e. that an event 

is present) if 

𝑢1 + ⋯ + 𝑢𝑀 ≥ 2𝑘 − 𝑀 

whereas 𝑢 = −1 otherwise. This means that to decide that an event is present at least k WSN 

nodes must detect the event. Note that k is a user parameter and that logical AND and OR 

functions are a special case of the k out of M fusion rule. In the sequel, it is considered that k=1, 

that is an OR logical function is considered, which means that if one sensor detects an event, 

then the global decision decides that an event is present.  

5) Computation of performance metrics after fusion algorithm. 

The detection performance must be assessed again after the implementation of the fusion 

rule, described in the previous point. The aim is to corroborate that the performance is improved 

thanks to the fusion. Thereby, as in the case of the individual WSN nodes, the performance 

metrics considered for the fusion algorithm are the detection rate and the false alarm rate. These 

are defined as above, though they are applied after the fusion rule. 

6) Plot of performance metrics. 

This functionality of the simulator aims to plot the performance metrics, i.e. detection and 

false alarm rates, corresponding to each WSN node and after the fusion rule. This permits to 

assess the performance of the proposed system as a function of the event and system parameters. 

More insights will be given in the next section. 

 

 

2.2.2.2.2 Numerical results 



COPCAMS                          Cognitive & Perceptive Cameras    Public version 

ARTEMIS-JU – GA n°332913 2017-01-17 15:19 32  

In this section we pretend to carry out a campaign of simulation results based on the simu-

lator exposed in the previous sections. The aim is to assess the performance of the distributed 

detection system as a function of the event and system parameters. Unless otherwise stated, in 

the next simulations the event length is set to L=5, the processing buffer length to N=10, the 

total number of processing buffers B=10000 and the probability of an event at a given pro-

cessing buffer Pevent = 0.3, dmin = 15 cm 

First we assess the influence of the event amplitude when the noise variance is small. This 

is shown in Figure 11, where plots of detection rate and false alarm rate are displayed for a 

fixed noise standard deviation of σ = 2 and where the event amplitude is fixed to A=10 cm in 

the left plot and A=40 cm in the right plot. Moreover, in these figures the heuristic factor hf, 

which determines the threshold of the heuristic detector, is varied from 0 (which corresponds 

to a threshold at the noise floor) and 52 which is a threshold above the event signal. 0 shows 

that when the noise variance is small, there is an interval of hf values where almost perfect 

detection performance can be achieved (i.e. D≈1 and F≈0). This hf interval corresponds to 

values above the noise level and below the event amplitude. Moreover, Figure 11 shows that as 

the event amplitude increases, the hf margin for perfect detection increases as well. 

  

Figure 11: Influence of the event amplitude given a small noise variance. 

In Figure 12 the influence of increasing the noise variance, for a given event amplitude, is 

assessed. On the left hand a small noise standard deviation (σ = 2) is presented, whereas in the 

right hind side a noise standard deviation σ = 15, which is a significant level compared to the 

event signal, is presented. Figure 12 highlights that increasing the noise power tends to corrupt 

more the sensor measurements and thereby it is more difficult to detect the presence of the 

event. This is translated in an increment of the false alarm rate and a reduction of the detection 
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rate in the interval of 0 < hf < A, where before for a small noise power an almost perfect detec-

tion could be achieved.  

  

Figure 12: Influence of the noise variance given a certain event amplitude. 

Next, we assess the influence of the event length in the detection performance. The results 

are presented in Figure 13. It can be observed that as the event length is reduced the performance 

gets worse. Namely, the detection rate decreases and the false alarm rate may increase. 

  

Figure 13: Influence of the event length given a certain event amplitude and noise variance. 

In Figure 14 a multiple sensor scenario is considered, namely a detection system composed 

of three WSN nodes is considered. An event is present in the scenario with an amplitude A=20 

cm and L=9 in 30% of the processing buffers (i.e. Pevent = 0.3). Moreover, in the first sensor 

the event is observed without attenuation i.e. A=20 cm, however, in the other sensors the event 

is observed with an attenuation factor of h2 = 0.5 and h2 = 0.1. This means that the second 

sensor node observes an event with A=10 cm (which is half the amplitude of the actual event), 
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whereas the third sensor observed an event with A=2 cm. In Figure 14 the effect of the attenu-

ation can be observed. Namely, it provokes a reduction of the margin where the detection rate 

is high and the false alarm is low. This implies that the selection of the heuristic threshold factor 

in the second sensor is more sensible. This effect worsens in the third sensor node, as only very 

few values of hf permit an acceptable detection and false alarm rates. 

In Figure 15 the same simulation conditions than in Figure 14 are taken into account. The 

aim is to study the performance after applying the fusion of detections method described above, 

i.e. the k out of M rule. More specifically, k=1, which leads to a logical OR fusion rule. Recall 

that the fusion rule has as input data the detections of each WSN node; thereby it outputs a 

decision which is a logical OR among the individual decisions of each node. This rationale can 

be observed comparing Figure 14 and Figure 15. That is, observe that the performance of the 

fusion is similar to the best performance among all the individual WSN nodes, which in the 

case of Figure 14 corresponds to the first WSN node (i.e. the upper left plot). This shows the 

beneficial effects of applying a fusion rule. On the one hand, the performance of the worse 

WSN nodes is improved, e.g. if we had only the sensor node 3, then the detection of the event 

will be rather difficult as the signal is observed with a high attenuation. On the other hand, the 

performance of the best WSN node is almost not affected after the fusion method. Only an 

increase in false alarm rate is observed if the heuristic threshold factor is selected with a very 

small value, i.e. close to the noise floor. 
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Figure 14: Influence of the attenuation factor in a multiple sensor scenario. 

 

 

Figure 15: Detection performance after the Fusion algorithm. 
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2.2.2.3.1 Description of the experimental setup 

In order to validate the conclusions extracted from the simulated scenario CTTC has devel-

oped a platform to test real experiments. Although this deliverable is focused on Large Area 

Surveillance Applications, for the sake of simplicity, CTTC has developed a testing platform 

for a laboratory environment. The platform presented here can be dimensioned for an outdoor 

scenario choosing the appropriate sensors.  
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Figure 16 shows a block diagram of the experimental platform developed. It is constituted 

by 3 ultrasonic sensors, 4 Zolertia Z1 motes and a Raspberry Pi 2 Model B. In general, each 

one of the ultrasonic sensors detects the presence or not of someone or something in front of it. 

Then, each one of the motes gathers data from the sensor and sends them to the sink mote via 

a wireless link. Data is encapsulated in unicast packets. Then the sink mote forwards the data 

received to the Raspberry Pi (or fusion centre) where it is processed thanks to the fusion algo-

rithm implemented therein. 

 
Figure 16: Experimental setup 

The ultrasonic sensors chosen are the LV-MaxSonar-EZ1 model MB1010 from MaxBotix 

Inc. It is a low cost device with high sensitivity, a narrow beam and specially used for people 

and object detection. The LV-MaxSonar-EZ detects objects from 0 to 6.45 meters and provides 

sonar range information with 2.54 cm (1-inch) resolution. The interface output formats included 

are pulse width output, analog voltage output, and RS232 serial output. In our case, the analog 

voltage output has been chosen. Figure 17 shows a picture of the sensor and its beam pattern. 
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a) b) 

Figure 17: LV-MaxSonar-EZ1: a) ultrasonic sensor; b) beam pattern 

With the purpose of giving some redundancy to the system and to avoid situations in which 

someone or something is not detected by a single ultrasonic sensor, an array of sensors has been 

built, as it can be seen in Figure 16. When using multiple ultrasonic sensors in a single system 

there can be interference (cross-talk) from the other sensors. MaxBotix Inc. has engineered and 

supplied different solutions to solve this problem. The solution is referred to as chaining. One 

of the methods of chaining that work well to avoid the issue of cross-talk is the known as Analog 

Output Commanded Loop method (see Figure 18).  

 

Figure 18: Analog Output Commanded Loop 

The first sensor range, then trigger the next sensor to range and so on for all the sensors in 

the array. Once the last sensor has ranged, the array stops until the first sensor is triggered to 

range again. In our implementation three sensors have been used. Later it is explained how the 

ranging array is started. After some preliminary experiments and due to the thickness of the 
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beam it was decided that an appropriate distance between sensors was 60 cm. Note that in an 

outdoor scenario the crosstalk issue can be solved by separating the sensors with an appropriate 

distance as well. 

 

 

 

a) 

 

b) 

Figure 19: Zolertia Z1 mote: a) Z1 connections b) Z1 external box  

Figure 19 shows in more detail the WSN nodes used in the platform. They are Z1 motes by 

Zolertia equipped with a second generation MSP430F2617 low-power microcontroller, which 

features a 16-bit RISC CPU @16MHz clock speed, a built-in clock factory calibration, an 8 KB 

RAM and a 92 KB Flash memory. They also include the CC2420 transceiver, which is 

IEEE802.15.4 compliant, operating at 2.4 GHz frequency band with a data rate of 250 Kbps. 

The sensors support Contiki OS, an open-source Operating System for the IoT, which connects 

tiny, low-cost, low-power microcontrollers to the Internet and supports IPv6 through 6Low-

PAN. Each mote can operate either as a source or a sink node. The pair sensor and source mote 

(see Figure 20) constitutes the nodes of the platform.  

The MaxSonar sensor is connected directly to the 5V Phidgets port of the source mote. It is 

connected through 3 coloured wires: red (power +5V), black (ground, GND) and green (analog 

input). Moreover, an extra wire (blue) is used to synchronize the ranging in the sensor array 

(see Figure 18). To start ranging, the blue cable is connected to a certain pin of the Z1 mote 

whose level of voltage can be modified thanks to the following instructions: 

 

relay_on();     // Bring the pin of the Z1 to HIGH 

clock_wait(6);  // Wait for a multiple of ~8ms (a tick). So, we wait 6*8ms=48ms 

relay_toggle(); // Change the status to LOW 
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Figure 20: Node: pair ultrasonic sensor + Z1 source mote 

This generates a pulse signal which is reused to trigger the other sensors in the chain. 

Finally, the data arrives to the sink mote which is connected to the Raspberry Pi via USB, 

as it can be seen in Figure 21. The Raspberry implements the fusion algorithm and can be 

controlled remotely thanks to network protocols such as Secure Shell (SSH). 

 

Figure 21: Raspberry Pi 2 + Z1 sink mote 

These are the main technical features of the Raspberry Pi Model B used for the project: 

 A 900MHz quad-core ARM Cortex-A7 CPU 

 1GB RAM 

 4 USB, 1 Full HDMI and 1 Ethernet ports 

 40 GPIO pins 

 Combined 3.5mm audio jack and composite video 
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 Camera interface (CSI) and Display interface (DSI) 

 Micro SD card slot 

 VideoCore IV 3D graphics core 

Note: The appendix at the end of the document contains the pseudocode used to program the 

motes and the fusion centre. 

2.2.2.3.2 Experimental results 

Figure 22 shows the platform developed by CTTC to test the simulated scenarios. In front 

of the platform there is a wall located more than 7 meters. This platform corresponds to the 

block diagram explained before (see Figure 16 for more information). 

 

Figure 22: Platform developed 

The first test consists on showing the good features of the sensors used for the experiments 

when we are in an only noise scenario. As it has been commented before, the LV-MaxSonar-

EZ sensor detects objects from 0 to 6.45 meters. Due to this reason, Figure 23, Figure 24 and 

Figure 25 show the performance of the three sensors integrated into the platform. To make this 

measure it has been left free of objects the area (7 meters) in front of the platform. Due to a 

matter of graphic visualization, only the first 30cm are shown. The noise variance of the sensors 

is very low, as it can be appreciated in the figures. 
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Figure 23: Output without object (Mote 31)  

 

Figure 24: Output without object (Mote 33) 

 

Figure 25: Output without object (Mote 35)  

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

25

30

Packet number

D
is

ta
n
c
e
 [

c
m

]

Distance (no object) - Mote 31

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

25

30

Packet number

D
is

ta
n
c
e
 [

c
m

]

Distance (no object) - Mote 33

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

25

30

Packet number

D
is

ta
n
c
e
 [

c
m

]

Distance (no object) - Mote 35



COPCAMS                          Cognitive & Perceptive Cameras    Public version 

ARTEMIS-JU – GA n°332913 2017-01-17 15:19 42  

In order to test test the feasibility of the platform two different experiments have been imple-

mented: 

Experiment 1:  Single Sensor Case. Place a narrow object in front of one of the sensors. 

 

Figure 26: Experiment 1 – Narrow object 

Figure 26 shows the experiment made in the Auditorium of the CTTC. Figure 27, Figure 

28 and Figure 29 show the results of these experiments. Data shown in these figures is measured 

at the input of the sink mote which is receiving the information gathered by the source motes. 

Each source mote sends whether it has detected (‘1’) or not detected (‘-1’) an object/person by 

its corresponding ultrasonic sensor. It is important to note that a measurement is received every 

second from each sensor and that in the figures every packet number corresponds to a measure-

ment. Taking that into account, between t=100 and 340 seconds a narrow object was placed 

1meter in front of Mote 33 (the one in the middle of the platform). The threshold of the detectors 
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of each node has been set to 25 cm. As it can be seen, only the sensor of mote 33 detects the 

object. Therefore, the platform works perfectly well. 

 

Figure 27: Experiment 1 - Mote 31 

 

Figure 28: Experiment 1 – Mote 33 

 

 

 

Figure 29: Experiment 1 – Mote 35 

Note: The fusion centre implemented in the Raspberry Pi is not taken into account for this 

preliminary test. 

 

Experiment 2: Multiple Sensor Case. Place a thick object in front of two of the sensors and on 

the edge of the third one. 

Figure 30 illustrates the second experiment. In comparison with the previous one now the 

object is thicker. It is placed 1 meter in front of motes 31 and 33 but on the edge of mote 35. 

The object is placed at the limit of coverage, of mote 35 (sensor 3), as it can be seen in the block 

diagram in Figure 31. The threshold of the detectors of each node has been set to 25 cm. 
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Figure 30: Experiment 2 - Thick object 
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Figure 31 explains in a graphical manner the idea behind this experiment. 

 

 

Figure 31: Experiment 2 - Coverage limit 

As it was expected, motes 31 and 33 detect the object perfectly well during all the time that 

the experiment is performed; results are shown in Figure 32 and Figure 33, respectively. How-

ever, Figure 34 shows the detection results for mote 35, not all the time the object is detected, 

it can be said that the object is detected in a random manner. In the event that there had been 

one sensor instead of an array of three, this could cause a poor detection. This justifies the use 

of an array to cover a certain region. After performing the fusion of the individual detections of 

each sensor, 100% detection is obtained. This was the expected result since the object was 

placed in front of the platform. That is, the fusion algorithm implements a logical OR of the 

individual detections. Thereby, if one or more sensors have a detection rate of 100%, then after 

the fusion process the detection rate will be 100% as well. 
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Figure 32: Experiment 2 – Mote 31 

 

Figure 33: Experiment 2 – Mote 33 
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Figure 34: Experiment 2 – Mote 35 

The data showed in these figures comes from the output of the motes or the input of the 

Raspberry Pi, the fusion centre. 

Taking into account the definitions of the detection rate (D) factor and the false alarm (F) 

factor defined in section 2.2.2.2.1, the following calculations for this experiment can be made. 

The false alarm rate for the three sensors is 0% because there had been no detections when they 

were not expected according to the figures above. Therefore, the false alarm rate for the whole 

system (at the output of the fusion centre) is also 0%. This is because the noise variance is very 

low. Regarding the detection rate for motes 31 and 33 is 100%, all detections happened when 

they were expected (this is between packet number 0 and 65). At packet number 66 the object 

was placed in front of the platform, so from this instant until the end of the experiment (335 

packets), a detection is expected for every packet: 

𝐷𝑚𝑜𝑡𝑒31 = 100% 

𝐷𝑚𝑜𝑡𝑒33 = 100% 

𝐷𝑚𝑜𝑡𝑒35 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
=

220

335
= 0.6568 →  𝐷𝑚𝑜𝑡𝑒35(%) = 65.68% 

These results are consistent if one takes into account that the object is located right on the 

edge of coverage of the sensor (mote 35). However, the output of the fusion centre gives a 100% 
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of detection thanks to the fusion algorithm which implements a logical OR of the individual 

detection rates: 

𝐷𝑚𝑜𝑡𝑒31 𝑂𝑅 𝐷𝑚𝑜𝑡𝑒33 𝑂𝑅 𝐷𝑚𝑜𝑡𝑒35 = 100% 

 

Experiment 3: Progressively increase the threshold. False alarm study. 

Figure 23, Figure 24 and Figure 25 showed the noise level of the three sensors integrated 

into the platform. Here we want to study what happens when the threshold is incremented by 1 

(from 0 to 14cm) every 20 packets received without objects located in front of the platform, as 

it can be seen in Figure 35, Figure 36 and Figure 37 which show the output of each one of these 

sensors. Moreover, Figure 38 shows the output of the fusion centre (the result of the logical OR 

implemented).  
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Figure 35: Experiment 3 – Mote 31 

 
Figure 36: Experiment 3 – Mote 33 

 
Figure 37: Experiment 3 – Mote 35 

 
Figure 38: Experiment 3 – Fusion centre 

The expected output for this experiment is ‘-1’ which means that no detection has occurred. 

But, as it can be seen in the figures above, some false alarms appears when we are working with 

a low threshold (between 0 and 4 cm). Table 8 summarizes the results for this experiment.  

Table 8: False alarm rate 

Threshold 

(cm) 

Mote 

31 

Mote 

33 

Mote 

35 

Fusin Cen-

tre 

0 100% 100% 100% 100% 

1 100% 100% 50% 100% 

2 25% 10% 0% 25% 

3 5% 0% 0% 5% 

4 5% 5% 5% 5% 

5-14 0% 0% 0% 0% 

For thresholds 0 and 1cm most of the detections are false alarms, no detections were ex-

pected. As a conclusion, a threshold greater than 4 is required to have a good performance. 

Finally, in order to demonstrate that the system reacts as expected, Figure 39 shows the 

output console of the fusion centre with the final decision taken by the detector implemented. 
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The figure shows the four different possibilities: no detection or detection monitored by 1, 2 or 

3 sensors. 

 

Figure 39: Console output (Raspberry Pi – Fusion centre) 
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2.2.3 Communication Infrastructure Simulation 

2.2.4 Cognitive and Perceptive Cameras - Systems for Smart Facility 

Management  

Facilities management is gaining increasing recognition as a significant contributor to the overall 

effectiveness of many organisations. Smart Facility and Building Management (SF&BM) generally in-

volves a number of disciplines and services. The most general description to identify the market segment 

is understanding Smart F&BM as integrated management process that considers people, process and 

place in organisational context, being focused in the design and improvement of intelligent buildings 

(IB) and the coordination and optimization of several domains: facilities, life security, physical security 

and information technology. In this context, companies are becoming more interested in exploring op-

portunities to consolidate multiple services from single suppliers as a way of improving value. There is 

a significant consolidation opportunity for service providers able to deliver an integrated solution. 

The motivation for this use case was to test and iteratively improve the approach (together with the 

use case in T5.3 Cognitive and Perceptive Vision Systems for Smart Building Scenario), in order to 

identify a minimum viable service (MVS) that can be provided to different clients as a comprehensive 

solution within the Smart Facilities and Smart Buildings Management domain.  

The objective of the field test was to evaluate the potential use of a CPVS to provide different func-

tions/profiles depending of different situations. That is, to explore the potential of COPCAMS approach, 

-with embedded and powerful vision systems- to sense the surrounding environment, and react to 

changes. In this case, the field test aims to explore the possibility of a COPCAMS system that is initially 

working in “asset recognition mode” to change to “surveillance mode” to detect intrusions in the specific 

zone. This can be used in different environments, as public or industrial facilities to control different 

assets (trolleys in airports, containers in maritime cargo terminals, special vehicles in public/private 

facilities e.g.).  

Having as reference the algorithms initially defined in WP3, the iterative process  has led to a set of 

final components, implemented in the Application Support Layer  -using the component-based inter-

faces approach-, that have been validated in the field tests -analysing its performance with different 

CPU/GPU configurations-, that address two fundamental needs in Smart Facilities & Building Manage-

ment:  

• Asset Detection. 

• Detection of  Intrusions in Outdoor Work Area. 
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2.2.4.1 Setup description 

The setup of the system has been as follows: A COPCAMS platform (PC+GPGPU)  with a single 

camera has been placed to monitor a working area. The platform has been configured with the specific 

COPCAMS components, that process the input from the camera, and register the results,  in order to be 

sent to a main station that could feed an asset management solution (as the one provided by CCTL for 

the management of facilities -ServiceONE®-,) a dashboard or a decision-making system. 

 

Figure 40 CCTL Setup Description 

The described setup has taken place in an outdoor controlled area. We have assumed that the system 

is correctly installed to cover the monitoring area and the camera is calibrated. 

2.2.4.2 COPCAMS modules involved 

For the CPVS for Facility Management field test, different candidate algorithms have been devel-

oped, and analysed. An iterative process has led to a set of final components. Within the Application 

Support Layer of the COPCAMS’ middleware, CCTL has generated specific features for human detec-

tion, and asset detection, and implemented the respective services through a component-based ap-

proach. This approach -based in a basic, common interface- facilitates the provision of different CV 

components that can be used in high-level applications. To generate the specific outcomes for analysing 

the different configurations, specific components have been developed: 

 CPVS for Smart Facility Management: This is the main component. It orchestrate the 

communication with the Main Station, and enables the activate services for asset detection, 

and detection of human intrusions.   

 Asset Detection: This is a C++ component, that registers data captured in real-time, to 

evaluate the performance of the service.  

 Detection of Human Intrusions: This is a C++ component that registers data captured in 

real-time,  to evaluate the performance of the service.  
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The final components of this demo make an intensive use of OpenCV 3.0, that are well optimized 

for GPGPU architectures, and therefore the usage of WP2 tools  (Kommentator and PPCG) has not been 

included. 

2.2.4.3 Scenario 

The field test scenario has been performed in an outdoor, controlled area. The system is initially set 

up to identify specific assets. These assets have been identified thanks to a specific image pattern, and 

remain stopped during a timeframe of 2-4 seconds, simulating a routine control.  

On a particular moment (triggered by the end of working time or by a specific simulated alarm that 

will be captured by the system), the system has been required to change to surveillance mode, and detect 

human intrusions in that specific zone.  The results have been registered, in order to be sent to a main 

station, that could feed a facility management system as ServiceONE®.  

Asset Detection 

This feature is focused in exploring the potential of COPCAMS for an enhanced asset management 

that can be used in different environments, as public or industrial facilities to control different assets 

(trolleys in airports, containers in maritime cargo terminals, special vehicles in public/private facilities 

e.g.). The component is based in the Haar classifier- that has been trained to provide a better accuracy. 

The component has been then integrated in a high-level application.  

 

Figure 41 asset identified thanks to a specific image pattern 

 

Person Detection 

This feature is shared with the “person detection” component provided in CPVS for Smart Building 

Scenario, in order to test the flexibility and composability of the system in different environments.  
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Figure 42 person detected 

  

 

 

2.2.4.4 Outcomes of the experiments 

The analysis of the outcomes has been focused in evaluating the performance of the solution in two 

different versions: A CPU configuration (AMD A8 7410@2.2GHz ) and a  GPGPU for embedded ap-

plications (AMD Radeon R5 M330), to evaluate the enhanced capabilities of a multi-core platform, that 

can be provided to different clients as a comprehensive solution within the Smart Facilities and Smart 

Buildings Management domain, taking into account performance, cost, efficiency and deployment re-

quirements. 

Asset Detection 

The GPGPU configuration speed-up the asset detection. Therefore, the accuracy is highly improved.  

Below as follows, the results are shown:  

 



COPCAMS                          Cognitive & Perceptive Cameras    Public version 

ARTEMIS-JU – GA n°332913 2017-01-17 15:19 54  

 

Figure 43 Asset Detection: CPU/GPGPU comparison 

 

Person Detection 

The GPGPU configuration speed-up the asset detection. Therefore, the accuracy is highly improved.  

Below as follows, the results are shown:  

 

Figure 44 Person Detection CPU/GPGPU comparison 
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During this field test, the combination of sensing technologies with the already consolidated need 

of retail market for security systems has been validated. The analysis of images, usually used for phys-

ical security, has been included in a broader solution, to provide data and information for facility man-

agement.  

These field tests have also validated the Component-Based approach, as a way to reduce barriers to 

product development and market entry. The outcomes of this field test provide a solution with clear 

competitive advantages: flexibility and higher performance, together with high composability than can 

by applied to different platforms in a field-proven technology.  

The outcomes from COPCAMS are representing a significant step towards wider adoption of 

embedded vision systems within the Smart Facilities & Smart Building Management domain.  With the 

outcomes from COPCAMS, CCTL is providing enhanced solutions, integrating smart video applications 

in future releases of its Infrastructure and Facility Management solutions.  

As provider of its own tool for the management of facilities -ServiceONE®-, CCTL targets public 

and private organizations with a wide range of assets and areas that are difficult to manage due to their 

complexity (Banking, Hospitals, Hotels, Infrastructures, Logisctics, Pharma, Public Admin…).   

CCTL is currently working in the definition of strategy for the commercialization phase, taking 

advantage of the flexibility provided by the new CPVS implemented in this project, to consolidate our 

position as provider of integrated services in Smart Facility Management domain for surveillance, en-

ergy management and enhanced building performance, and generate innovative solutions to strengthen 

our strategy for a wider deployment within the Smart City domain. 

As an specific outcome of this work, it is remarkable the interest shown by a large firm, that will be in 

charge of the management of a large area including a seaport -that will be extended- in evaluating this 

flexible solution as an added-value to our Facility Management solution (ServiceONE®) combined with 

an innovative solution based on drones. 

2.2.5 Face Detection System  

The motivation of the HOE2 lab. experiment based on the Face Tracing System from CEA is 

twofolds: 

 To showcase the use of the development process, its prototype tool CanHOE2, and as-

sess their benefits [33][34][36]. 

 To experiment with a runtime for the HOE2 language and its code-production associ-

ated tool. 

Another goal is to experiment with optimization and efficient code generation for computing 

kernels based on the advanced features of the HOE2 language [35][37]. This experiment is 
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based on the JPEG image encoding algorithm and targets OpenCL for CPU+GPU PC-based 

platforms. 

2.2.5.1    Face-Tracking System Modelling 

The modelling of the Face Tracking System started from the use cases mentioned in “D5.1 – 

Large Area Surveillance Applications Specification”. CEA applied a large portion of its HOE2 

process toward the development of the system [33][34][36].  

System Analysis 

Figure 45 & Figure 46 provide a one to one modelling of the use cases documented in D5.1, 

albeit in French. 

 

 

Figure 45: Use Cases of the Face Tracking System 

 

Figure 46: Use Cases of the Face Tracking Platform 

For each of those use cases, a number of nominal and errors scenarios, captured as sequence 

diagrams have modeled the expected interactions between the actors and their system. Eventu-

ally, there are 17 scenarios spread over 11 use cases. 

System Analysis 

The System Analysis of the Face Tracker Application is shown on Figure 47. It basically cap-

tures that the business objects of the application are the TurretController, FaceDetector and 

PresenceDetetcor. These are the thee objects that allow to satisfy the scenarios of the Require-

ment Analysis phase, without taking into account implementation concerns. 
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Figure 47: System Analysis of the Face Tracking Application 

The System Analysis of the Face Tracker Platform is shown Figure 48. It presents the worlds 

of the platform, an abstraction of the processors, which will host application’s objects. It pre-

sents also the various peripherals of each sub-platforms, Raspberry Pi and Arduino, and the 

way some of them are connected when the two platforms are assembled in a single one. Lastly, 

it presents the containers that will be used to implement the application’s design objects on the 

platform. Those container have different coding rules on different sub-platforms and can pro-

vide access to peripherals. 

For the application and the platform as a whole, we have 14 objects and 7 containers. Combined, 

the objects’ Statecharts have 32 states and 39 transitions. 

 

 

Figure 48: System Analysis of the Face Tracking Platform 

System Design of the Application 

Figure 49 presents the results of the System Design phase where the objects are split and dis-

tributed over the various words provided by the platform.  
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Figure 49: System Analysis of the Face Tracking Application 

The associations that were already present in System Analysis are used within any of the two 

worlds. New associations appear to account for the fact that the FaceTrakingApplication has 

been split and distributed over the Raspberry Pi and the Arduino, and that the two pieces of 

what was a single object at the previous phase must now communicate together. 

System Implementation of the Application 

The contribution of the System Implementation is to bind split objects from the Application’s 

System Design with a container of the world they will run on. This is captured on Figure 50. At 

that point the application is implemented on its platform at the model level, and the only re-

maining task is to apply the codding rules of the various containers and worlds to the objects to 

get the final application code. 

 

Figure 50: System Implementation of the Face Tracking Application on its Platform 

At this point, the model is made of 15 objects, 7 containers. The Statecharts, combined, are 

made of 37 stages and 47 transitions. 

Application Code generation, Platform Runtime Implementation 
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The code produced following the system implementation is made through a number code gen-

erators based on Acceleo1. The generated code of the application implement the object seman-

tics with the help of a dedicated runtime that implements the core HOE2 semantics. 

OpenCL and Parallel Code Generation from HOE2 Models 

CEA has proposed an evolution of Statecharts to capture specific arithmetics and parallelism 

inherent to objects and associations, and developed a compilation flow that analyses the models 

and generate optimized OpenCL for a CPU+GPU architecture [35][37][38]. 

 
Figure 51: JPEG Algorithm 

They have exercised the compilation flow on JPEG image encoding, as defined Figure 52, and 

produced code for PC-based CPU+GPU architecture. 

Statistics & Conclusions 

As of mid-September 2016, the situation is the following: The code generators are able to pro-

duce code for Ubuntu on a regular PC. The runtime is implementing the HOE2 semantics on 

the same Ubuntu on a regular PC. Both will be ported to Raspbian (Raspberry Pi’s Debian 

Linux) in the near future as the real target platform is a Raspberry Pi plus an Arduino. 

 

 
Figure 52: HOE2 Model of JPEG Image Data 

The port of the code generators and the runtime will be easy as Ubuntu is a Debian derivative. 

The main difference will be for the containers dealing with I/Os, that will have to interface with 

device drivers in “/dev” to access the actual I/O. We have a prototype code generator targeting 

the Arduino that predates the current developments, and we will reuse it to complete the toolset 

for the whole Face Tracking Platform. 

                                                      

1 A model-to-text generator framework from Eclipse, based on OMG’s model-to-text language. For more 

details see https://eclipse.org/acceleo 
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The developments of the Face Tracker System and the Linux code generator were made by a 

junior developer, with minor contributions from more seniors personal, and will continue over 

the coming months. The various efforts, in Man.day, for the models and code to reach the cur-

rents status are: 

 50 M.d for the modelling of the Face Detection System, which is estimated to be 80% 

complete. 

 30 M.d for the development of the HOE2 runtime, estimated to be 90% complete. 

 12 M.d for the Linux code generators, estimated to be 60% complete. 

The application modelling will vary with the complexity of the application. The runtime will 

be developed only once, and will not be updated for upcoming applications. The code genera-

tors depends on the platform, and will not need to be updated for a new application. 

So for a new system, the packages that will need to be updated will be the application and the 

code generators. If the new system is mainly a new application using the same platform, then 

the development effort will have to be focus on the development of the new model. If, on the 

other hand, the new system is the same application but working on a different platform, then 

the effort will focus mostly on the platform model. It may also impact the application model, 

but only at and below System Design. 

To conclude: 

We believe that the ratio of four-to-one in terms of application modelling vs. platform generator 

development illustrates the benefits of a clean and clear separation between application and 

platform modelling for embedded system developments. 

With code generation from HOE2 language, we have shown that Statechart-based modelling 

can be used to generate efficient parallel code for modern architecture. 

 

2.2.6 Activity Detetection and Anonymisation system 

In this part, we propose a video coding scheme with respect to privacy requirements by 

exploring processes of anonymisation into the video stream. The first part of this system is to 

detect activities from the video, and to identify the area where ‘activities’ located in the scene. 

This algorithm was already presented in D3.2 and D3.5, and was tested in ‘difficult’ conditions 

(weather, light, night ) as shown in Figure 53. In the second part, the concept presented in Figure 

54 and Figure 55 is a new technique for real-time reversible anonymisation, using object detec-

tion and localisation, with essential data encrypted in a compliant video bitstream. 
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Figure 53: Activity detection algorithm 

 

 

 

 

 



COPCAMS                          Cognitive & Perceptive Cameras    Public version 

ARTEMIS-JU – GA n°332913 2017-01-17 15:19 62  

 

Figure 54: Proposed scheme for anonymisation at the video encoder side 

 

 

Figure 55: Proposed scheme for anonymisation at the video decoder side 

 

The method involves compressing a masked (blurred or pixelated) video sequence using 

a H.264 compliant encoder in order to obtain a first compressed stream. Difference between 
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an original video sequence and the masked compressed sequence is compressed in order to 

obtain a second compressed stream by using an enhancement layer video coder as existing 

in H.264/MVC.  

The second flow is cyphered with an access-control that is not-interpretable, such that a 

H.264 video decoder cannot decompress the second flow. The first and second flows are 

multiplexed and synchronized to obtain a single compressed bitstream.  

All the algorithms were ported in IMX6 platform (see Figure 56) and optimized to work 

in real-time at legacy resolution for CCTV application (800x600).  

 

Figure 56: IMX6 platform 

 

3 Conclusion 

The demonstration activities for the large area surveillance applications are described in 

two categories, i.e., a field test and laboratory experiments. The methodology for evaluating 

field test and the metrics and measurement strategy of COPCAMS solutions on large area sur-

veillance applications are explained. The results explored by evaluating the field test are re-

ported. 
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Appendix 

A. Pseudocode for detectors (at each mote)  

a. Parameters 

N=10;  %Processing buffer length (in samples). 

 

B=10000; %Number of processing buffers (in the case of a finite processing loop, see explanation below). 
 

T=5; %Number of processing buffers used for training. The training is needed to compute the floor level which is then 

used to set the detection threshold. 
 

tb=0; %Boolean used to check whether training was carried out. 
 

fl=0; %Mean floor level of the measured samples. 

 
std_tmp=0; 

 

hf=40;  %Heuristic factor for Detection Threshold (in cm below the noise level). That is the detection threshold is fl-hf. We 

assume it is equal for all the sensors, assuming that the noise level is %the same for all of them. Otherwise set a 

different threshold %for the sensors.  

th=0;   %Detection Threshold 
 

L=1;  %Number of samples that must be above threshold to decide a detection. 

 
c=0; %Counter for detection purposes 

 

 

b. Detection loop 

while (true)   %Processing loop. Here we’ve two options. Infinite loop or finite loop with a given number of processing buffers. In 
the latter case the code should be for(i=1:B) … end 

 

if(tb==0) %Training. We needed it to compute the “floor” of the %measurements, which is then used for detection pur-
poses. 

 

while i<N*T  %Wait until we’ve enough samples for training. 
fl=fl+sample; %Iteration to compute mean floor level      

std_tmp=std_tmp+sample^2; %Iteration to compute std level 

 
i=i+1; 

end  

i=0; 
    fl=fl/(N*T); 

std_tmp=std_tmp/N; 

std=std_tmp-fl^2;  
tb=1; 

th=fl-hf; 

end 
 

while(i<N) %Wait until we have the N samples needed for the processing buffer. 

 i=i+1; 
if(x<th) 

%Counter of number of measurement  

%Samples below threshold 
 c=c+1; 

end 

end 
i=0; 

if(c>=L)  %Detection 

   D=1; 
else 

   D=-1;   

end 
c=0; 

send(D); % Send the detection to fusion centre 

end 
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B. Pseudocode for fusion of detections (at Raspberry Pi) 

a. Parameters 

M=3; %Number of sensors 

 

k=1; %This is the parameter of the k out of M fusion rule. That is, fusion rule decides a positive detection if at least k 
sensors %decide a positive detection. k belongs to [1,M]  

 

b. Computation of fusion performance 

while (true) % This loop should be substituted by for(i=1:B) … end if  
%we want just to receive B decisions corresponding to each %mote 

 

 for (each mote) 
  receive(Di) %Wait for detection of M sensors 

 Dt=Dt+Di; 

 end 

   

 if (Dt>=2k-M)  %Fusion rule 

  %Decide detection 
 else 

  %Decide no detection 

 end 

end 
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